REDOX REACTIONS

FACT/DEFINITION TYPE QUESTIONS

- Which of the following process takes place in oxidation process?
 - (a) Addition of oxygen
- (b) Addition of hydrogen
- (c) Removal of oxygen
- (d) Addition of chlorine
- Given reaction,

$$2K_4[Fe(CN)_6] (aq) + H_2O_2(aq) \rightarrow 2K_3[Fe(CN)_6](aq) + 2KOH(aq)$$

The above given reaction is oxidation reaction due to

- (a) removal of a hydrogen from H₂O₂
- (b) addition of electropositive potassium to H₂O₂
- (c) removal of electropositive element potassium from potassium ferrocyanide (K₄[Fe(CN)₆])
- (d) All of the above are the correct reasons.
- 3. In the reaction given below, identify the species undergoing redox reaction

$$2\text{Na(s)} + \text{H}_2(g) \longrightarrow 2\text{NaH}(s)$$

- (a) Na is reduced and hydrogen is oxidised
- (b) Na is oxidised and hydrogen is reduced
- Na undergoes oxidation and hydrogen undergoes reduction
- (d) Both (b) and (c)
- The loss of electron is termed as
 - (a) oxidation
- (b) reduction
- (c) combustion
- (d) neutralization
- 5. Which of the following is correct code for x and y in the following reaction.

- (i) x =oxidation reaction, y = reduction reaction
- (ii) x = gain of two electrons, y = loss of two electrons,
- (iii) x = reduction reaction, y = oxidation reaction
- (iv) x = loss of two electrons, y = gain of two electrons
- (a) (i) and (ii)
- (b) (i) and (iv)
- (c) (ii) and (iii)
- (d) (iii) and (iv)

- Which of the following involves transfer of five
 - (a) $MnO_4^- \rightarrow Mn^{2+}$ (b) $CrO_4^{2-} \rightarrow Cr^{3+}$
- - (c) $MnO_4^{2-} \rightarrow MnO_2$ (d) $Cr_2O_7^{2-} \rightarrow 2Cr^{3+}$
- Which reaction involves neither oxidation nor reduction?

 - (a) $\operatorname{CrO}_4^{2-} \longrightarrow \operatorname{Cr}_2\operatorname{O}_7^{2-}$ (b) $\operatorname{Cr} \longrightarrow \operatorname{CrCl}_3$

(d) $2S_2O_3^{2-} \longrightarrow S_4O_6^{2-}$

(c) $Na \longrightarrow Na^+$

In the following reaction

$$4P + 3KOH + 3H_2O \longrightarrow 3KH_2PO_2 + PH_3$$

- phosphorus is both oxidised and reduced.
- (b) only phosphorus is reduced.
- (c) phosphorus is not oxidised
- (d) None of these
- 9. Which one of the following reaction involves oxidationreduction?
 - (a) $H_2 + Br_2 \rightarrow 2HBr$
 - (b) NaBr + HCl → NaCl + HBr
 - (c) HBr + AgNO₃ → AgBr + HNO₃
 - (d) $2 \text{NaOH} + \text{H}_2 \text{SO}_4 \rightarrow \text{Na}_2 \text{SO}_4 + 2 \text{H}_2 \text{O}$
- 10. In reaction, $4\text{Na} + \text{O}_2 \longrightarrow 2\text{Na}_2\text{O}$, sodium behaves as
 - (a) oxidising agent
- (b) reducing agent
- (c) Both (a) and (b)
- (d) None of these
- 11. $Zn^{2+}(aq.) + 2e^{-} \longrightarrow Zn(s)$. This is
 - (a) oxidation
- (b) reduction
- (c) redox reaction
- (d) None of the above
- 12. $Co(s) + Cu^{2+}(aq) \longrightarrow Co^{2+}(aq) + Cu(s)$

The above reaction is

- (a) oxidation reaction
- (b) reduction reaction
- (c) redox reaction
- (d) None of these
- One mole of N₂H₄ loses 10 moles of electrons to form a new compound, y. Assuming that all nitrogen appear in the new compound, what is the oxidation state of nitrogen in y (There is no change in the oxidation state of hydrogen)
 - (a) -1
- (b) -3
- (c) +3
- (d) +5

(i) S ₃ [Fe(CN) ₆] (i) Cu ² (b) Zn ²⁺ (c) ZnS (d) Cus (d) Cus (e) A ₂ > Zn > Cu (d) Zn > A ₂ > Cu (e) A ₂ > Zn > Cu (d) Zn > A ₂ > Cu (f) A ₂ > Zn > Cu (d) Zn > A ₃ (h) Land A ₃ is in the order: (a) Cu > Zn > A ₂ (b) Zn > A ₂ > Cu (c) A ₂ > Zn > Cu (d) Zn > Cu > A ₃ (d) Hat is the oxidation number of elements in the free or in the uncombined state? (a) +1 (b) 0 (c) +2 (d) −1 (b) Haptest = Ch ₂ , lowest = H ₂ O ₂ (c) Highest = Ch ₂ , lowest = H ₂ O ₂ (d) Highest = KO ₂ , lowest = H ₂ O ₂ (e) Highest = KO ₂ , lowest = H ₂ O ₂ (e) Highest = KO ₂ , lowest = H ₂ O ₂ (f) Highest = KO ₂ , lowest = H ₂ O ₂ (g) Au(IIICl ₂ (d) None of these (a) Au(IIICl ₃ (b) Au(IIICl ₂ (c) Au(IICl ₂ (d) None of these (a) Au(IIICl ₃ (b) Au(IIICl ₂ (c) Au(IICl ₃ (d) So ₂ + H ₂ SO ₄ → BaSO ₄ + H ₂ O ₂ (d) Salo −3 → Z H ₂ O +3S (e) BaO ₂ + H ₂ SO ₄ → BaSO ₄ + H ₂ O ₂ (d) Salo −3 → Z H ₂ O +3S (e) BaO ₂ + H ₂ SO ₄ → BaSO ₄ + H ₂ O ₂ (d) Salo −3 → Z H ₂ O +3S (e) BaO ₂ + H ₂ SO ₄ → BaSO ₄ + H ₂ O ₂ (d) Salo −3 → Z H ₂ O +3S (e) BaO ₂ + H ₂ SO ₄ → BaSO ₄ + H ₂ O ₂ (d) Salo −3 → Z H ₂ O +3S (e) BaO ₂ + H ₂ SO ₄ → BaSO ₄ + H ₂ O ₂ (d) Salo −3 → Z H ₂ O +3S (e) BaO ₂ + H ₂ SO ₄ → BaSO ₄ + H ₂ O ₂ (d) Salo −3 → Z H ₂ O +3S (e) BaO ₂ + H ₂ SO ₄ → BaSO ₄ + H ₂ O ₂ (d) Salo −3 → Z H ₂ O +3S (e) BaO ₂ + H ₂ SO ₄ → BaSO ₄ + H ₂ O ₂ (d) Salo −3 → Z H ₂ O +3S (e) −2 (d) +2 (e) −1 (d) −3 (f) −2	14.	When a strip of metallic zinc is placed in an aqueous solution of copper nitrate the blue colour of the solution	27.	In which of the following oxidation state?	g compounds, iron has lo
(a) \$\tilde{\text{Cu}}^2\$ (b) \$\tilde{\text{Zn}}^2\$ (c) \$\tilde{\text{Zn}}^2\$ (d) \$\tilde{\text{Cu}}^2\$ (d) \$\tilde{\text{Cu}}^2\$ (d) \$\tilde{\text{Cu}}^2\$ (e) \$\tilde{\text{Zn}}^2\$ (d) \$\text{					
 (c) ZnS		(a) Cu^{2+} (b) Zn^{2+}		(a) $K_3[Fe(CN)_6]$	
metals Cu, Zn and Ag is in the order: (a) $Cu > Zn > Ag$ (b) $Zn > Ag > Cu$ (c) $Ag > Zn > Cu$ (d) $Zn > Cu > Ag$ 16. What is the oxidation number of elements in the free or in the uncombined state? (a) +1 (b) 0 (c) +2 (d) -1 17. In which of the following compounds oxygen has highest oxidation state and in which it has lowest oxidation state? OF ₂ , H_2O_3 , KO_2 , O_2F_2 (a) $Highest = KO_2$, lowest $= K_2O_2$ (b) $Highest = OF_2$, lowest $= K_2O_2$ (c) $Highest = OF_2$, lowest $= K_2O_2$ (d) $Highest = KO_2$, lowest $= K_2O_2$ (e) $Highest = KO_2$, lowest $= K_2O_2$ (f) $Highest = KO_2$, lowest $= K_2O_2$ (g) $Highest = K_2O$				(b) $K_4[Fe(CN)_6]$	
(a) Cu > Zn > Ag (b) Zn > Ag > Cu (c) Ag > Zn > Cu (d) Zn > Cu > Ag > Cu (d) Zn > Cu > Ag > 2n > Cu (d) Zn > Cu > Ag > 2n > Cu (d) Zn > Cu > Ag > 2n > Cu (d) Zn > Cu > Ag > 2n > Cu (d) Zn > Cu > Ag > 2n > Cu (d) Zn > Cu > Ag > Cu > Ag > 2n > Cu (d) Zn > Cu > Ag > Cu > Ag > 2n > Cu (d) Zn > Cu > Ag > Cu > Ag > Cu > Cu > Cu > Ag > Cu > Cu > Cu > Ag > Cu > C	15.			(c) FeSO ₄ .(NH ₄) ₂ SO ₄	.6H ₂ O
16. What is the oxidation number of elements in the free or in the uncombined state? (a) +1 (b) 0 (c) +2 (d) -1 17. In which of the following compounds oxygen has highest oxidation state and in which it has lowest oxidation state? OF₂ H₂O₂ KO₂·O₂F₂ (a) Highest = KO₂, lowest = H₂O₂ (b) Highest = OF₂, lowest = K₂O₂ (c) Highest = OF₂, lowest = K₂O₂ (d) Highest = KO₃, lowest = H₂O₂ (d) Highest = KO₃, lowest = H₂O₂ (e) Highest = KO₃, lowest = H₂O₂ (f) Highest = KO₃, lowest = H₂O₂ (g) Highest = KO₃, lowest = H₂O₂ (g) Highest = OF₂, lowest = KO₂ (g) Highest = KO₃, lowest = H₂O₂ (g) Highest = OF₂, lowest = KO₂ (g) Highest = OF₂ (g) Highe				(d) Fe(CO) ₅	
 (a) +7 (b) +6 (c) +4 (d) +8 (a) +7 (b) +6 (c) +4 (d) +8 (b) 0 (c) +2 (d) -1 (c) +2 (d) -1 (d) -1 (e) +4 (d) +8 (e) +4 (d) +8 (e) +4 (d) +8 (f) +6 (f) +6 (g) +1 (d) -1 (h) which of the following compounds oxygen has highest oxidation state and in which it has lowest oxidation state? OF₂, H₂O₂ (O₂ - Q₂ - Q₃ (D₄ - Q₂ - Q₂ - Q₃ (D₄ - Q₂ - Q₃ - Q₄ -			28.		ium (Os) in OsO, is
in the uncombined state ? (a) $+1$ (b) 0 (c) $+2$ (d) -1 17. In which of the following compounds oxygen has highest exidation state and in which it has lowest oxidation state? OF ₂ , H ₂ O ₂ , KO ₂ , O ₂ F ₂ (a) Highest = KO ₂ , lowest = H ₂ O ₂ (b) Highest = OF ₂ , lowest = K ₂ O ₂ (c) Highest = OF ₂ , lowest = H ₂ O ₂ (d) Highest = KO ₂ , lowest = H ₂ O ₂ (d) Highest = KO ₂ , lowest = H ₂ O ₂ (e) Highest = KO ₂ , lowest = H ₂ O ₂ (d) Highest = KO ₂ , lowest = H ₂ O ₂ (e) Highest = KO ₂ , lowest = H ₂ O ₂ (f) Highest = KO ₂ , lowest = H ₂ O ₂ (h) Aumong the following dobting, identify the species with an attent exit and in which of the following compounds the oxidation number of color sarries and in this exit and in which of the following compounds the oxidation number of color sarries and in this exit and in which of the following compounds, the oxidation number of color in the policy in the following compounds, the oxidati	16.	What is the oxidation number of elements in the free or			
(a) +1 (b) 0 (c) +2 (d) −1 17. In which of the following compounds oxygen has highest oxidation state and in which it has lowest oxidation state? OF ₂ H ₂ O ₂ , KO ₂ , O ₂ F ₂ (a) Highest = KO ₂ , lowest = H ₂ O ₂ (b) Highest = OF ₂ , lowest = K ₂ O ₂ (c) Highest = OF ₂ , lowest = H ₂ O ₂ (d) Highest = KO ₂ , lowest = H ₂ O ₂ (d) Highest = KO ₂ , lowest = H ₂ O ₂ (e) Highest = OF ₂ , lowest = H ₂ O ₂ (f) Highest = OF ₂ , lowest = H ₂ O ₂ (g) Highest = OF ₂ , lowest = H ₂ O ₂ (g) Highest = OF ₂ , lowest = H ₂ O ₂ (g) Highest = OF ₂ , lowest = H ₂ O ₂ (g) Highest = OF ₂ , lowest = H ₂ O ₂ (g) Highest = OF ₂ , lowest = H ₂ O ₂ (g) Highest = OF ₂ , lowest = H ₂ O ₂ (h) Highest = OF ₂ , lowest = H ₂ O ₂ (g) Highest = OF ₂ , lowest = H ₂ O ₂ (g) Highest = OF ₂ , lowest = H ₂ O ₂ (h) Highest = OF ₂ , lowest = H ₂ O ₂ (l) Highest = OF ₂ , lowest = H ₂ O ₂ (l) Highest = OF ₂ , lowest = H ₂ O ₂ (l) Highest = OF ₂ , lowest = H ₂ O ₂ (l) Highest = OF ₂ , lowest = H ₂ O ₂ (l) Highest = OF ₂ , lowest = H ₂ O ₂ (l) Highest = OF ₂ , lowest = H ₂ O ₂ (l) Highest = OF ₂ , lowest = H ₂ O ₂ (l) Highest = OF ₂ , lowest = H ₂ O ₂ (l) Highest = OF ₂ , lowest = H ₂ O ₂ (l) Highest = OF ₂ , lowest = H ₂ O ₂ (l) Highest = OF ₂ , lowest = H ₂				5.7	
17. In which of the following compounds oxygen has highest oxidation state and in which it has lowest oxidation state? OF ₂ , H ₂ O ₂ , KO ₂ , O ₂ F ₂ (a) Highest = KO ₂ , lowest = H ₂ O ₂ (b) Highest = OF ₂ , lowest = K ₂ O ₂ (c) Highest = OF ₂ , lowest = K ₂ O ₂ (d) Highest = OF ₂ , lowest = H ₂ O ₂ (d) Highest = OF ₂ ,			29.	\$ //	
oxidation state and in which it has lowest oxidation state? OF ₂ , H ₂ O ₂ , CO ₂ C ₂ C ₃ (a) Highest = $6C_2$, lowest = H_2O_2 (b) Highest = $6C_2$, lowest = H_2O_2 (c) Highest = $6C_2$, lowest = H_2O_2 (d) Highest = $6C_2$, lowest = H_2O_2 (a) MnO ₂ (b) Mn ₃ O ₄ (c) K_2 MnO ₄ (d) MnSO ₄ (d) MnO ₄ (e) H_2O_2 (d) Mnoe of these (e) Au(III)Cl ₃ (d) None of these (e) Au(III)Cl ₃ (d) None of these (e) H_2O_2 (d) None of these (e) H_2O_2 (d) Mnoe of these (e) H_2O_2 (d) H_2O_2 (e) H_2O_2 (d) H_2O_2 (e) H_2O_2 (d) H_2O_2 (e) H_2O_2 (e) H_2O_2 (f) H_2O_2 (f) H_2O_2 (f) H_2O_2 (f) H_2O_2 (h) $H_$		SANCE TO SELECT THE PROPERTY OF THE PROPERTY O			
solution state and in the first lowest extration state: OF_2 , H_2O_2 , KO_2 , OF_2 (a) Highest $= KO_2$, lowest $= H_2O_2$ (b) Highest $= OF_2$, lowest $= K_2O_2$ (c) Highest $= OF_2$, lowest $= H_2O_2$ (d) Highest $= KO_2$, lowest $= H_2O_2$ (d) Highest $= KO_2$, lowest $= H_2O_2$ (e) H_2O_2 (f) H_2O_2 (f) H_2O_2 (g) H_2O_2 (h) H_2O_2 (17.			(a) [Fe(CO) ₅]	(b) NH ₂ .NH ₂
 (a) Highest = KO₂, lowest = H₂O₂ (b) Highest = OF₂, lowest = K₂O₂ (c) Highest = OF₂, lowest = K₂O₂ (d) Highest = KO₂, lowest = H₂O₂ (a) H₁+1, +1, -1 (b) -1, +1, +1 (c) +1, +1, +1 (d) -1, -1, -1 (e) Au(II)Cl₃ (b) Au(II)Cl₂ (c) Au(II)Cl₃ (d) None of these Oxidation number of N in HNO₃ is (a) -3.5 (e) -5 (d) +5 In which of the following, identify the species with an at +6 oxidation state (a) MnO₄ (b) Cr(CN)₆⁵ (c) NiF₆² (d) CrO₂Cl₂ In which of the following, identify the species with an at +6 oxidation state (a) MnO₄ (b) Cr(CN)₆⁵ (c) NiF₆² (d) CrO₂Cl₂ In which of the following compounds the oxidation mof earbon is not zero? (a) MnO₄ (b) Cr(CN)₆⁵ (c) NiF₆² (d) CrO₂Cl₂ In which of the following compounds the oxidation mof earbon is not zero? (a) HCHO (b) CH₃COH (c) C₁₂H₂D₂O₁ (d) CH₃CHO (e) F₅ (d) HCHO (e) F₃COH (e) F₁F₂ (f) HCHO (h) F₃COH (c) F₅ (d) HCHO (e) F₃COH (e) F₅ (f) HCHO (h) F₃COH (h) F₃Con HCHO (c) F₅ (d) HCHO (e) F₅Con HCHO (f) F₅Con HCHO					(d) CrO ₅
(b) Highest = OF ₂ , lowest = K ₂ O ₂ (c) Highest = OF ₂ , lowest = K ₂ O ₂ (d) Highest = KO ₂ , lowest = H ₂ O ₂ 18. 'Oxidation number of H in NaH, CaH ₂ and LiH, respectively is (a) +1, +1, -1 (b) -1, +1, +1 (c) +1, +1, +1 (d) -1, -1, -1 19. Which of the following is the correct representative of stock notation for auric chloride? (a) Au(II)Cl ₂ (b) Au(I)Cl ₂ (c) Au(I)Cl ₂ (d) None of these 20. Oxidation number of N in HNO ₃ is (a) -3.5 (b) +3.5 (c) -5 (d) +5 (a) 4 KClO ₃ → 3KClO ₄ +KCl (b) SO ₂ +2H ₂ S → 2H ₂ O+3S (d) 3BaO+O ₂ → 2BaO ₂ 21. In which of the following reactions, there is no change in valency? (a) 4 KClO ₃ → 3KClO ₄ +KCl (b) SO ₂ +2H ₂ S → 2H ₂ O+3S (d) 3BaO+O ₂ → 2BaO ₂ 22. The oxidation number of chromium in potassium dichromate is (a) +6 (b) -5 (c) -2 (d) +2 23. The oxidation number of sulphur in S ₈ , S ₂ F ₂ , H ₂ S respectively, are (a) 0, +1 and -2 (d) -2, +1 and -2 (c) 0, +1 and +2 (d) -2, +1 and -2 (c) 0, -1 and +2 (d) -3 24. Oxidation number of nitrogen in (NH ₄) ₂ SO ₄ is (a) -1 (c) +1 (d) -3 25. Oxidation number of carbon in (H ₂ Cl ₂ is (a) -4 (b) +4 (b) +4 (c) -4 (d) +1 (d) -3 26. Oxidation number of carbon in (H ₂ Cl ₂ is (a) -4 (b) +4 (b) +4 (d) -4 (d)			30.	In which of the compounds	does 'manganese' exhibit hig
(c) Highest = OF ₂ , lowest = KO ₂ (d) Highest = KO ₂ , lowest = H ₂ O ₂ 18. 'Oxidation number of H in NaH, CaH ₂ and LiH, respectively is (a) +1, +1, -1 (b) -1, +1, +1 (c) +1, +1, +1 (d) -1, -1, -1 19. Which of the following is the correct representative of stock notation for auric chloride? (a) Au(II)Cl ₃ (b) Au(II)Cl ₂ (c) Au(I)Cl ₂ (d) Mone of these 20. Oxidation number of N in HNO ₃ is (a) -3.5 (b) +3.5 (c) -5 (d) +5 21. In which of the following reactions, there is no change in valency? (a) 4 KClO ₃ → 3 KClO ₄ +KCl (b) SO ₂ +2H ₂ S → 2H ₂ O+3S (c) BaO ₂ +H ₂ SO ₄ → BaSO ₄ +H ₂ O ₂ (d) 3BaO+O ₂ → 2 BaO ₂ . 22. The oxidation number of chromium in potassium dichromate is (a) +6 (b) -5 (c) -2 (d) 0,+1 and +2 (d) -2,+1 and -2 (e) 0,+1 and +2 (d) -2,+1 and -2 (e) 0,+1 and +2 (d) -3 25. Oxidation number of introgen in (NH ₄) ₂ SO ₄ is (a) -1/3 (b) -1 (c) +1 (d) -3 26. Oxidation number of carbon in CH ₂ Cl ₂ is (a) -4 (b) +4 (c) -1 (c) +1 (d) -3 27. Oxidation number of carbon in CH ₂ Cl ₂ is (a) -4 (b) +4 (c) -1 (c) +1 (d) -3 (d) MnO ₄ (d) MnSO ₄ (i) MnO ₄ (b) Cr(CN) ₆ ³ (c) Nif ₆ ² ⁻² (d) C) Nif ₆ ² -2 (d) MnCO ₂ (i) Nif ₆ ² -2 (d) MnCO ₂ (i) Nif ₆ ² -2 (i) MnHO ₂ (i) Nif ₆ ² -1 (i) Horitof the following compounds the oxidation more for a few times in the oxidation state of Cin Nife ² -2 (i) Nife ² -2 (i) Nife ² -2 (ii) MnHO ₂ (ii) Nife ² -2 (iii) Horitof the following compounds the oxidation more for a few times in the oxidation state of Cin Nife ² -3 (ii) HCHO (ii) Cr(Nife ² -3 (iii) MnO ₂ (ii) Nife ² -3 (iii) HCHO (iv) Nife ² -3 (iii) MnO ₂ (iv) Nife ² -3 (iii) HCHO (iv) Nife ² -3 (iii) MnO ₂ (iv) Nife ² -3 (iii) HCHO (iv) Nife ² -3 (iii) MnO ₂ (iv) Nife ² -3 (iii) HCHO (iv) Nife ² -3 (iii) HCHO (iv) Nife ² -3 (iii) MnO ₂ (iv) Nife ² -3 (iv) Nife ² -3 (iv) Nife ² -3 (iv) Nife ² -				oxidation number?	
(d) Highest = KO_2 , lowest = $H_2\tilde{O}_2$ 18. 'Oxidation number of Hin NaH, CaH_2 and LiH, respectively is (a) +1, +1, -1 (b) -1, +1, +1 (c) +1, +1, +1 (d) -1, -1, -1 19. Which of the following is the correct representative of stock notation for auric chloride? (a) Au/(III)Cl ₂ (d) None of these 20. Oxidation number of Nin HNO ₃ is (a) -3.5 (b) +3.5 (c) -5 (d) +5 (c) -5 (d) +5 (d) $3BaO + O_2 \longrightarrow 2BaO_2$ 21. In which of the following reactions, there is no change in valency? (a) $4KClO_3 \longrightarrow 3KClO_4 + KCl$ (b) $SO_2 + 2H_2S \longrightarrow 2H_2O + 3S$ (c) $BaO_2 + H_2SO_4 \longrightarrow BaSO_4 + H_2O_2$ (d) $3BaO + O_2 \longrightarrow 2BaO_2$ 22. The oxidation number of chromium in potassium dichromate is (a) +6 (b) -5 (c) -2 (d) +2 23. The oxidation number of sulphur in S_8 , S_2F_2 , H_2S (e) 0 , -1 and -2 (b) $+2$, $+1$ and -2 (c) 0 , $+1$ and -2 (d) -2 , $+1$ and -2 (e) -1 (d) -3 25. Oxidation number of carbon in CH_2Cl_2 is (a) $-1/3$ (b) -1 (c) $+1$ (d) -3 26. Oxidation number of carbon in CH_2Cl_2 is (a) -4 (b) $+4$ (b) $+4$ (c) -4 (d) $+4$ (d) $+4$ (e) -4 (f) $+4$ (f) -4 (f)				(a) MnO ₂	(b) Mn_3O_4
18. *Oxidation number of H in NaH, CaH₂ and LiH₁ respectively is (a) +1,+1,-1 (b) -1,+1,+1 (c) +1,+1,+1 (d) -1,-1,-1 19. Which of the following is the correct representative of stock notation for auric chloride? (a) Au(III)Cl₃ (b) Au(II)Cl₂ (c) Au(I)Cl₂ (d) None of these 20. Oxidation number of N in HNO₃ is (a) -3.5 (b) +3.5 (c) -5 (d) +5 21. In which of the following reactions, there is no change in valency? (a) 4 KClO₃ → 3 KClO₄+KCl (b) SO₂+2H₂S → 2H₂O+3S (c) BaO₂+H₂SO₄ → BaSO₄+H₂O₂ (d) 3BaO+O₂ → 2BaO₂. 22. The oxidation number of chromium in potassium dichromate is (a) +6 (b) -5 (c) -2 (d) +2 23. The oxidation number of sulphur in S ₈ , S₂F₂, H₂S respectively, are (a) 0,+1 and −2 (b) +2,+1 and −2 (c) 0,+1 and +2 (d) -2,+1 and −2 (c) 0,+1 and +2 (d) -2,+1 and −2 (c) 0,+1 and +2 (d) -3 25. Oxidation number of introgen in (NH₄)₂SO₄ is (a) -1/3 (b) -1 (c) +1 (d) -3 26. Oxidation number of carbon in CH₂Cl₂ is (a) -4 (b) +4 (c) -1 (d) -3 (c) +1 (d) -3 (d) -2 (b) CO₂ (d) HCHO (b) CH₃COOH (c) Cl₂H₂2O₁1 (d) CH₃COOH (c) Cl₂H₃C₂O11 (d) H₃COOH (c) Cl₂H₃C₂O11 (d) H₃COOH (c) NiF₂² (d) CrO₂Cl₂ (a) HCHO (b) CH₃COOH (c) Cl₂H₃C₂O11 (d) CH₃COOH (c) Cl₂H₃C₂O11 (d) CH₃COOH (c) Cl₂H₂SO1 (d) CH₃COOH (c) NiF₂² (d) CrO₂Cl₂ (a) HCHO (b) CH₃COOH (c) Cl₂H₂O11 (d) CH₃COOH (c) Cl₂H₂O11 (d) CH₃COOH (c) Cl₂H₂O11 (d) CH₃COOH (c) NiF₂² (d) CrO₂Cl₂ (a) HCHO (b) CH₃COOH (c) Cl₂H₂O11 (d) CH₃COOH (c) Cl₂H₂O11 (d) CH₃COOH (c) NiF₂² (d) CrO₂Cl₂ (a) HCHO (b) CH₃COOH (c) Cl₂H₂O11 (d) CH₃COOH (c) NiF₂² (d) HCHO (b) CH₃COOH				(c) K ₂ MnO ₄	(d) MnSO ₄
is (a) $+1$, $+1$, -1 (b) -1 , $+1$, $+1$ (c) $+1$, $+1$, $+1$ (d) -1 , -1 , -1 (e) $+1$, $+1$, $+1$ (d) -1 , -1 , -1 (e) $+1$, $+1$, $+1$ (d) -1 , -1 , -1 (e) $+1$, $+1$, $+1$ (d) -1 , -1 , -1 (e) $+1$, $+1$, $+1$ (d) -1 , -1 , -1 (e) $+1$, $+1$, $+1$ (d) -1 , -1 , -1 (e) $+1$, $+1$, $+1$ (d) -1 , -1 , -1 (e) $+1$ (d) -1 (e) $+1$ (e) $+1$ (f) -1 (f) $+1$ (f) -1	18.		31.		ntify the species with an ato
(c) +1, +1, +1 (d) −1, −1, −1 Which of the following is the correct representative of stock notation for auric chloride? (a) Au(III)Cl ₃ (b) Au(II)Cl ₂ (c) Au(I)Cl ₂ (d) None of these 20. Oxidation number of N in HNO ₃ is (a) −3.5 (b) +3.5 (c) −5 (d) +5 21. In which of the following reactions, there is no change in valency? (a) 4 KClO ₃ → 3KClO ₄ +KCl (b) SO ₂ +2H ₂ S → 2H ₂ O+3S (c) BaO ₂ +H ₂ SO ₄ → BaSO ₄ +H ₂ O ₂ (d) 3BaO+O ₂ → 2 BaO ₂ 22. The oxidation number of chromium in potassium dichromate is (a) +6 (b) −5 (c) −2 (d) +2 23. The oxidation number of sulphur in S ₈ , S ₂ F ₂ , H ₂ S (a) 0, +1 and −2 (b) +2, +1 and −2 (c) 0, +1 and +2 (d) −2, +1 and −2 (d) 0, +1 and +2 (d) −3 25. Oxidation number of cobalt in K[Co(CO) ₄] is (a) +1 (b) +3 (c) −1 (d) −3 26. Oxidation number of carbon in CH ₂ Cl ₂ is (a) −4 (b) +4 (c) NiF ₆ ² (d) CrO ₂ Cl ₂ In which of the following compounds the oxidation numor of carbon is not zero? (a) HCHO (b) CH ₃ COOH (c) C ₁ ₂ H ₂₂ O ₁₁ (d) CH ₃ CHO In which of the following compounds the oxidation numor of carbon is not zero? (a) HCHO (b) CH ₃ COOH (c) C ₁ ₂ H ₂₂ O ₁₁ (d) CH ₃ CHO In which of the following compounds, the oxidation numor of icarbon is not zero? (a) HCHO (b) CH ₃ COOH (c) C ₁ ₂ H ₂₂ O ₁₁ (d) CH ₃ CHO In which of the following compounds, the oxidation number of collowing compounds, the oxidation number of indepting and indepting approach is not zero? (a) HCHO (b) CH ₃ COOH (c) C ₁ ₁ H ₂ O ₂ (d) CH ₃ CHO (c) C ₁ ₁ H ₂ O ₂ (d) IF ₃ 33. In which of the following compounds, the oxidation number of indepting approach is not zero? (a) HCHO (b) CH ₃ COOH (c) C ₁ H ₂ H ₂ O ₂ (d) H ₃ CHO (c) C ₁ ₁ H ₂ O ₂ (d) IF ₃ 34. A metal ion M³+ loses 3 electrons, its oxidation numbe be (a) +3 (b) +6 (b) 0 (c) 0 (d) −3 35. The correct name for NO ₂ using stock notation is (a) NO ₂ (b) SO ₂ (c) CO ₂ (d) ClO ₂ 37. The oxidation state of Fe in Fe ₃ O ₄ is (a) +3 (b) 8 (a) +3 (b) 6 (b) -1 (c) -6 (d) H ₃ 39. Oxygen thas an oxidation		그걸 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이		+6 oxidation state	
(c) +1, +1, +1 (d) −1, -1, -1 Which of the following is the correct representative of stock notation for auric chloride? (a) Au(III)Cl ₃ (b) Au(II)Cl ₂ (c) Au(I)Cl ₂ (d) None of these 20. Oxidation number of N in HNO ₃ is (a) −3.5 (b) +3.5 (c) −5 (d) +5 21. In which of the following reactions, there is no change in valency? (a) 4 KClO ₃ → 3 KClO ₄ + KCl (b) SO ₂ +2 H ₂ SO ₄ → BaSO ₄ + H ₂ O ₂ (d) 3 BaO + O ₂ → 2 BaO ₂ . 22. The oxidation number of chromium in potassium dichromate is (a) +6 (b) −5 (c) −2 (d) +2 23. The oxidation number of sulphur in S ₈ , S ₂ F ₂ , H ₂ S (a) 0, +1 and −2 (b) +2, +1 and −2 (c) 0, +1 and +2 (d) −2, +1 and −2 (c) 0, +1 and +2 (d) −3 24. Oxidation number of cobalt in K[Co(CO) ₄] is (a) +1 (b) +3 (c) −1 (d) −3 25. Oxidation number of carbon in CH ₂ Cl ₂ is (a) −4 (b) +4 (b) 0 (c) 0 (c) NiF ₆ ² (d) CrO ₂ Cl ₂ 1n which of the following compounds the oxidation numor of carbon is not zero? (a) HCHO (b) CH ₃ COOH (c) C ₁ H ₂ O ₂ (1) (d) CH ₃ CHO 1n which of the following compounds, the oxidation more of carbon is not zero? (a) HCHO (b) CH ₃ COOH (c) C ₁ H ₂ O ₂ (1) (d) CH ₃ CHO 1n which of the following compounds, the oxidation more of carbon is not zero? (a) HCHO (b) CH ₃ COOH (c) C ₁ H ₂ O ₂ (1) (d) CH ₃ CHO 1n which of the following compounds, the oxidation more of iotal in state of lollowing compounds, the oxidation number of increase in so change in of carbon is not zero? (a) HCHO (b) CH ₃ COOH (c) C ₁ H ₂ O ₂ (d) CH ₃ CHO 1n which of the following compounds, the oxidation more of iodality in the oxidation more of iodality in the oxidation number of colol in state of lollowing compounds, the oxidation numbe be (c) In which of the following compounds, the oxidation more of iodality in the oxidation more of iodality in the oxidation number of colol in state of lollowing compounds, the oxidation number of colol in state of lollowing compounds, the oxidation more of colol in state of lollowing compounds, the oxidation number of colol in state of lollowing com		(a) $+1, +1, -1$ (b) $-1, +1, +1$		(a) MnO_4^-	(b) $Cr(CN)_6^{3-}$
stock notation for auric chloride? (a) $Au(III)Cl_3$ (b) $Au(II)Cl_2$ (c) $Au(I)Cl_2$ (d) None of these 20. Oxidation number of N in HNO $_3$ is (a) -3.5 (b) $+3.5$ (c) -5 (d) $+5$ 21. In which of the following reactions, there is no change in valency? (a) $4KClO_3 \longrightarrow 3KClO_4 + KCl$ (b) $SO_2 + 2H_2S \longrightarrow 2H_2O + 3S$ (c) $BaO_2 + H_2SO_4 \longrightarrow BaSO_4 + H_2O_2$ (d) $3BaO + O_2 \longrightarrow 2BaO_2$ 22. The oxidation number of chromium in potassium dichromate is (a) $+6$ (b) -5 (c) -2 (d) $+2$ 23. The oxidation number of sulphur in S_8 , S_2F_2 , H_2S respectively, are (a) $0, +1$ and -2 (b) $+2, +1$ and -2 (c) $0, +1$ and $+2$ (d) $-2, +1$ and -2 (c) $0, +1$ and $+2$ (d) -3 24. Oxidation number of coabat in $K[Co(CO)_4]$ is (a) $+1$ (b) $+3$ (c) -1 (d) -3 25. Oxidation number of carbon in CH_2Cl_2 is (a) -4 (b) $+4$ (b) $+4$ (c) -1 (d) -3 26. Oxidation number of carbon in CH_2Cl_2 is (a) -4 (b) $+4$ (b) $+4$ (c) -4 (d) -4 (b) $+4$ (d) -4 (e) -4 (f)		(c) $+1, +1, +1$ (d) $-1, -1, -1$		(c) NiF ² -	(d) CrO ₂ Cl ₂
(a) $Au(III)Cl_3$ (b) $Au(III)Cl_2$ (c) $Au(I)Cl_2$ (d) None of these 20. Oxidation number of N in HNO_3 is (a) -3.5 (b) $+3.5$ (c) -5 (d) $+5$ 33. In which of the following reactions, there is no change in valency? (a) $4 KClO_3 \longrightarrow 3 KClO_4 + KCl$ (b) $SO_2 + 2H_2S \longrightarrow 2H_2O + 3S$ (c) $BaO_2 + H_2SO_4 \longrightarrow BaSO_4 + H_2O_2$ (d) $3 BaO + O_2 \longrightarrow 2 BaO_2$. 22. The oxidation number of chromium in potassium dichromate is (a) $+6$ (b) -5 (c) -2 (d) $+2$ 35. The oxidation number of sulphur in S_8 , S_2F_2 , H_2S respectively, are (a) $0, +1$ and -2 (b) $+2, +1$ and -2 (c) $0, +1$ and $+2$ (d) -3 36. The oxidation number of cobalt in $K[Co(CO)_4]$ is (a) $+1$ (b) $+3$ (c) -1 (d) -3 37. The oxidation number of introgen in $(NH_2)SO_4$ is (a) $-1/3$ (b) -1 (c) $+1$ (d) -3 36. Oxidation number of carbon in CH_2Cl_2 is (a) -4 (b) $+4$ (b) $+4$ 36. Oxidation number of carbon in CH_2Cl_2 is (a) -4 (b) $+4$ (b) $+4$ (c) -2 (d) -2 (d) -2 (e) -2 (d) -2 (e) -2 (d) -2 (e) -2 (d) -3 37. The oxidation state of -2 in the compount -2 (a) -2 (b) -2 (c) -2 (d) -2 (d) -2 (e) -2 (d) -2 (e) -2 (d) -2 (e) -2 (f) -2 (f	19.		22	50000 10-300M	
(a) Au(I)Cl ₂ (d) None of these (c) Au(I)Cl ₂ (d) None of these (d) None of these (e) Au(I)Cl ₂ (d) None of these (e) Au(I)Cl ₂ (d) None of these (e) Cl ₂ H ₂₂ O ₁₁ (d) CH ₃ COOH (c) Cl ₂ H ₂₂ O ₁₁ (d) CH ₃ COOH (c) Cl ₂ H ₂₂ O ₁₁ (d) CH ₃ CHO (d) CH ₃ CHO (d) CH ₃ CHO (e) Cl ₂ H ₂₂ O ₁₁ (d) CH ₃ CHO (e) Cl ₂ H ₂₂ O ₁₁ (d) CH ₃ CHO (e) Cl ₃ CHO (e) Cl ₃ COOH (e) Cl ₃			34.		ompounds the oxidation hui
20. Oxidation number of N in HNO ₃ is (a) −3.5 (b) +3.5 (c) −5 (d) +5 21. In which of the following reactions, there is no change in valency? (a) 4 KClO ₃ → 3 KClO ₄ +KCl (b) SO ₂ +2H ₂ S → 2H ₂ O+3S (c) BaO ₂ +H ₂ SO ₄ → BaSO ₄ +H ₂ O ₂ (d) 3 BaO+O ₂ → 2 BaO ₂ . 22. The oxidation number of chromium in potassium dichromate is (a) +6 (b) −5 (c) −2 (d) +2 23. The oxidation number of sulphur in S ₈ , S ₂ F ₂ , H ₂ S respectively, are (a) 0,+1 and −2 (b) +2,+1 and −2 (c) 0,+1 and +2 (d) −2,+1 and −2 (c) 0,+1 and +2 (d) −2,+1 and −2 (c) 0,+1 and +2 (d) −3 24. Oxidation number of introgen in (NH ₄) ₂ SO ₄ is (a) −1/3 (b) −1 (c) +1 (d) −3 26. Oxidation number of carbon in CH ₂ Cl ₂ is (a) −4 (b) +4 27. Oxidation number of carbon in CH ₂ Cl ₂ is (a) −4 (b) +4 28. In oxygen difluoride, the oxidation number of oxygen has an oxidation state of +2 in the compouncies of the oxidation state of +2 in the compouncies of the oxidation state of +2 in the compouncies of color in change in of iodine is fractional? (a) IF ₇ (b) IF ₃ (c) IF ₅ (d) IF ₇ A metal ion M³+ loses 3 electrons, its oxidation number of color in change in of iodine is fractional? (a) +3 (b) +6 (c) 0 (d) −3 37. The correct name for NO ₂ using stock notation is (a) nitrogen dioxide (b) nitrogen (iv) oxide (c) nitrogen per oxide (d) All of these 38. In oxygen diffluoride, the oxidation number of oxygen (a) −2 (b) −1 (c) +2 (d) +1,−2 39. Oxygen has an oxidation state of +2 in the compouncies of the oxidation of iodine is fractional? (a) IF ₇ (b) IF ₃ (c) IF ₅ (d) IF ₇ (d) IF ₇ (b) IF ₃ (c) IF ₅ (d) IF ₇ (d) IF ₇ (e) IF ₅ (d) IF ₇ (f) IF ₇ (f) IF ₇ (h) H ₇ (c) IF ₇ (d) H ₇ (F) IF ₈ (d) IF ₇ (e) IF ₈ (f) IF ₈ (f) IF ₈ (h) H ₈ (c) IF ₈ (g) IF ₉ (h) H ₉ (c) IF ₈ (g) IF ₉ (h) H ₉ (c) IF ₈ (h) H ₉ (c) IF ₉ (d) IF ₉ (d) IF ₉ (d) IF ₉ (e) IF ₉ (f) IF ₉ (h) H ₉ (c) IF ₉ (g) IF ₉ (h) H ₉ (c) IF ₉ (h) H ₉ (c) IF ₉ (h) IF ₉ (h) IF ₉ (c) IF ₉ (h) IF ₉ (h) IF ₉ (c) IF ₉ (h) IF ₉ (h) IF ₉ (c) IF ₉		(a) Au(III)Cl ₃ (b) Au(II)Cl ₂			(b) CH COOH
(a) −3.5 (b) +3.5 (c) −5 (d) +5 21. In which of the following reactions, there is no change in valency? (a) 4KClO ₃ → 3KClO ₄ +KCl (b) SO ₂ + 2H ₂ S → 2H ₂ O +3S (c) BaO ₂ + H ₂ SO ₄ → BaSO ₄ + H ₂ O ₂ (d) 3 BaO + O ₂ → 2 BaO ₂ . 22. The oxidation number of chromium in potassium dichromate is (a) +6 (b) −5 (c) −2 (d) +2 23. The oxidation number of sulphur in S ₈ , S ₂ F ₂ , H ₂ S respectively, are (a) 0,+1 and −2 (b) +2,+1 and −2 (c) 0,+1 and +2 (d) −2,+1 and −2 (c) −1 (d) −3 24. Oxidation number of nitrogen in (NH ₄) ₂ SO ₄ is (a) −1/3 (b) −1 (c) +1 (d) −3 25. Oxidation number of carbon in CH ₂ Cl ₂ is (a) −4 (b) +4 26. Oxidation number of carbon in CH ₂ Cl ₂ is (a) −4 (b) +4 27. In which of the following compounds, the oxidation modic of iodine is fractional? (a) IF ₇ (b) I ₃ (c) IF ₅ (d) IF ₃ 34. A metal ion M³+ loses 3 electrons, its oxidation number be (a) +3 (b) +6 (c) 0 (d) −3 35. The correct name for NO ₂ using stock notation is (a) nitrogen dioxide (b) nitrogen (iv) oxide (c) nitrogen per oxide (d) All of these 36. The oxidation state of Fe in Fe ₃ O ₄ is (a) NO ₂ (b) SO ₂ (c) CO ₂ (d) ClO ₂ 37. The oxidation state of Fe in Fe ₃ O ₄ is (a) +3 (b) 8/3 (c) +6 (d) +2 38. In oxygen difluoride, the oxidation number of oxygen (a) −2 (b) −1 (c) +1 (d) −3 39. Oxygen has an oxidation state of +2 in the compount (a) H ₂ O ₂ (b) CO ₂	20				
 (c) -5 (d) +5 21. In which of the following reactions, there is no change in valency? (a) 4 KClO₃ → 3 KClO₄+KCl (b) SO₂ + 2H₂S → 2H₂O + 3S (c) BaO₂ + H₂SO₄ → BaSO₄ + H₂O₂ (d) 3 BaO + O₂ → 2 BaO₂. 22. The oxidation number of chromium in potassium dichromate is (a) +6 (b) -5 (c) -2 (d) +2 23. The oxidation number of sulphur in S₈, S₂F₂, H₂S respectively, are (a) 0, +1 and -2 (b) +2, +1 and -2 (c) 0, +1 and +2 (d) -3 24. Oxidation number of cobalt in K[Co(CO)₄] is (a) +1 (b) +3 (c) -1 (c) +1 (d) -3 25. Oxidation number of carbon in CH₂Cl₂ is (a) -4 (b) +4 26. Oxidation number of carbon in CH₂Cl₂ is (a) -4 (b) +4 27. Oxidation number of carbon in CH₂Cl₂ is (a) -4 (b) +4 (a) IF₇ (b) IF₃ (c) IF₅ (d) IF₃ 4 metal ion M³⁺ loses 3 electrons, its oxidation number be (a) +3 (b) +6 (c) 0 (d) -3 35. The correct name for NO₂ using stock notation is (a) hitrogen dioxide (b) nitrogen (iv) oxide (c) nitrogen per oxide (d) All of these 36. The oxide, which cannot act as a reducing agent, is (a) NO₂ (b) SO₂ (c) CO₂ (d) ClO₂ (d) -3 (e) CO₂ (d) ClO₂ (f) B³ (g) NO₂ (b) SO₂ (g) CO₂ (d) ClO₂ (g) P₂ (d) ClO₂ 38. In oxygen difluoride, the oxidation number of oxygen (a) -2 (b) -1 (c) +2 (d) +1, -2 (g) CP (d) CP (d) +1, -2 (h) CP (d) CP	20.		33.	In which of the following co	ompounds, the oxidation nur
21. In which of the following reactions, there is no change in valency? (a) 4 KClO ₃ → 3 KClO ₄ + KCl (b) SO ₂ + 2H ₂ S → 2H ₂ O + 3S (c) BaO ₂ + H ₂ SO ₄ → BaSO ₄ + H ₂ O ₂ (d) 3 BaO + O ₂ → 2 BaO ₂ . 22. The oxidation number of chromium in potassium dichromate is (a) +6 (b) −5 (c) −2 (d) +2 23. The oxidation number of sulphur in S ₈ , S ₂ F ₂ , H ₂ S respectively, are (a) 0,+1 and −2 (b) +2,+1 and −2 (c) 0,+1 and +2 (d) −2,+1 and −2 (c) 0,+1 and +2 (d) −3 24. Oxidation number of cobalt in K[Co(CO) ₄] is (a) +1 (b) +3 (c) −1 (d) −3 (c) +1 (d) −3 25. Oxidation number of carbon in CH ₂ Cl ₂ is (a) −4 (b) +4 26. Oxidation number of carbon in CH ₂ Cl ₂ is (a) −4 (b) +4 27. In which of the following reactions, there is no change in valency? (a) IF ₅ (d) IF ₃ (c) IF ₅ (d) IF ₃ (A metal ion M³+ loses 3 electrons, its oxidation number be (a) +3 (b) +6 (c) 0 (d) −3 (a) +3 (b) +6 (c) 0 (d) −3 (a) nitrogen dioxide (b) nitrogen (iv) oxide (c) nitrogen per oxide (d) All of these 36. The oxide, which cannot act as a reducing agent, is (a) +3 (b) 83 (c) +6 (d) ClO ₂ (c) CO ₂ (d) ClO ₂ (d) ClO ₂ (e) CO ₂ (d) ClO ₂ (f) Co ₂ (g) H ₂ SO ₄ is (a) +3 (b) +6 (c) 0 (d) −3 (d) −3 (d) −3 (d) +3 (b) +6 (d) −3 (e) Clo Occopic for the oxidation number of oxygen (d) ClO ₂ (f) CO ₂ (g) CO ₂ (d) ClO ₂ (g) Co ₂ (g) H ₂ SO ₄ (g) P ₂					ompounds, the oxidation has
valency? (a) $4 \text{ KClO}_3 \longrightarrow 3 \text{ KClO}_4 + \text{ KCl}$ (b) $SO_2 + 2H_2S \longrightarrow 2H_2O + 3S$ (c) $BaO_2 + H_2SO_4 \longrightarrow BaSO_4 + H_2O_2$ (d) $3 \text{ BaO} + O_2 \longrightarrow 2 \text{ BaO}_2$. 22. The oxidation number of chromium in potassium dichromate is (a) $+6$ (b) -5 (c) -2 (d) $+2$ 23. The oxidation number of sulphur in S_8 , S_2F_2 , H_2S respectively, are (a) $0, +1$ and -2 (b) $+2, +1$ and -2 (c) $0, +1$ and $+2$ (d) $-2, +1$ and -2 (e) -1 (d) -3 24. Oxidation number of cobalt in $K[Co(CO)_4]$ is (a) $+1$ (b) $+3$ (c) -1 (d) -3 25. Oxidation number of nitrogen in $(NH_4)_2SO_4$ is (a) $-1/3$ (b) -1 (c) $+1$ (d) -3 26. Oxidation number of carbon in CH_2Cl_2 is (a) -4 (b) $+4$ 26. Oxidation number of carbon in CH_2Cl_2 is (a) -4 (b) $+4$ (a) $+1 CO_2$ (b) $+1 CO_2$ (c) $-1 CO_2$ (d) $-1 CO_2$ (e) $-1 CO_2$ (d) $-1 CO_2$ (e) $-1 CO_2$ (f)	21	그렇게 그렇게 살아가는 아이들이 그렇다면 그런 그리는 그리는 그를 보는 그를			(b) I ₂
(a) $4 \text{ KClO}_3 \longrightarrow 3 \text{ KClO}_4 + \text{ KCl}$ (b) $SO_2 + 2H_2S \longrightarrow 2H_2O + 3S$ (c) $BaO_2 + H_2SO_4 \longrightarrow BaSO_4 + H_2O_2$ (d) $3 BaO + O_2 \longrightarrow 2 BaO_2$. 22. The oxidation number of chromium in potassium dichromate is (a) $+6$ (b) -5 (c) -2 (d) $+2$ 23. The oxidation number of sulphur in S_8 , S_2F_2 , H_2S respectively, are (a) $0, +1$ and -2 (b) $+2, +1$ and -2 (c) $0, +1$ and $+2$ (d) $-2, +1$ and -2 (e) $0, +1$ and $+2$ (d) $-2, +1$ and -2 (e) -1 (d) -3 24. Oxidation number of cobalt in $K[Co(CO)_4]$ is (a) $+1$ (b) $+3$ (c) -1 (d) -3 25. Oxidation number of nitrogen in $(NH_4)_2SO_4$ is (a) $-1/3$ (b) -1 (c) $+1$ (d) -3 26. Oxidation number of carbon in CH_2Cl_2 is (a) -4 (b) $+4$ 27. The oxidation state of experiments of the expectation of the ex	21.			REDUCK PERSON IN	320 PZZ 50 M
the contraction number of chromium in potassium dichromate is (a) $+6$ (b) -5 (c) -2 (d) $+2$ (d) -2 (e) -2 (f) -2 (f) -2 (g) -2 (g) -2 (g) -2 (g) -2 (g) -2 (g) -2 (h) -2 (h) -2 (l)			3.4		
(c) BaO ₂ + H ₂ SO ₄ → BaSO ₄ + H ₂ O ₂ (d) 3 BaO + O ₂ → 2 BaO ₂ . 22. The oxidation number of chromium in potassium dichromate is (a) +6 (b) −5 (c) −2 (d) +2 23. The oxidation number of sulphur in S ₈ , S ₂ F ₂ , H ₂ S respectively, are (a) 0,+1 and −2 (b) +2,+1 and −2 (c) 0,+1 and +2 (d) −2,+1 and −2 (c) −1 (d) −3 24. Oxidation number of cobalt in K[Co(CO) ₄] is (a) +1 (b) +3 (b) +3 (c) −1 (d) −3 25. Oxidation number of nitrogen in (NH ₄) ₂ SO ₄ is (a) −1/3 (b) −1 (c) +1 (d) −3 26. Oxidation number of carbon in CH ₂ Cl ₂ is (a) −4 (b) +4 (a) +3 (b) +6 (c) 0 (d) −3 35. The correct name for NO ₂ using stock notation is (a) nitrogen dioxide (b) nitrogen (iv) oxide (c) nitrogen per oxide (d) All of these 36. The oxide, which cannot act as a reducing agent, is (a) NO ₂ (b) SO ₂ (c) CO ₂ (d) ClO ₂ 37. The oxidation state of Fe in Fe ₃ O ₄ is (a) +3 (b) 80 (c) nitrogen dioxide (b) nitrogen (iv) oxide (c) nitrogen per oxide (d) All of these 36. The oxide which cannot act as a reducing agent, is (a) NO ₂ (b) SO ₂ (c) CO ₂ (d) ClO ₂ 37. The oxidation state of Fe in Fe ₃ O ₄ is (a) +3 (b) +6 (c) 0 (d) −3 38. In oxygen difluoride, the oxidation number of oxygen (a) −2 (b) −1 (c) +2 (d) +1, −2 (d) +1, −2 (e) +2 (d) +1, −2 (f) +1 (d) −3 (g) -4 (h) +4 (h) +4 (h) +6 (c) 0 (d) −3 (d) −3 (e) nitrogen dioxide (b) nitrogen (iv) oxide (c) nitrogen per oxide (d) All of these (e) nitrogen dioxide (b) nitrogen (iv) oxide (c) nitrogen per oxide (d) All of these (a) NO ₂ (b) SO ₂ (a) +3 (b) +6 (c) 0 (c) 0 (d) ClO ₂ (d) ClO ₂ (d) +1 (d) +2 (d) +3 (d) +3 (d)			54.	2	ctrons, its oxidation number
(d) 3 BaO + O₂ → 2 BaO₂. 22. The oxidation number of chromium in potassium dichromate is (a) +6 (b) −5 (c) −2 (d) +2 23. The oxidation number of sulphur in S ₈ , S ₂ F ₂ , H ₂ S respectively, are (a) 0,+1 and −2 (b) +2,+1 and −2 (c) 0,+1 and +2 (d) −2,+1 and −2 (e) −1 (d) −3 24. Oxidation number of cobalt in K[Co(CO) ₄] is (a) +1 (b) +3 (c) −1 (d) −3 25. Oxidation number of nitrogen in (NH ₄) ₂ SO ₄ is (a) −1/3 (b) −1 (c) +1 (d) −3 26. Oxidation number of carbon in CH ₂ Cl ₂ is (a) −4 (b) +4 (c) 0 (d) −3 (d) −3 The correct name for NO₂ using stock notation is (a) nitrogen dioxide (b) nitrogen (iv) oxide (c) nitrogen per oxide (d) All of these (a) NO₂ (b) SO₂ (b) SO₂ (c) CO₂ (d) ClO₂ 37. The oxidation state of Fe in Fe ₃ O ₄ is (a) +3 (b) 8/3 (c) +6 (d) +2 (c) +6 (d) +2 38. In oxygen difluoride, the oxidation number of oxygen (a) −2 (b) −1 (c) +2 (d) +1, −2 (c) +2 (d) +1, −2 (d) −3 35. The correct name for NO₂ using stock notation is (a) nitrogen dioxide (b) nitrogen (iv) oxide (c) nitrogen per oxide (d) All of these 36. The oxidation state of Fe in Fe ₃ O ₄ is (a) +3 (b) 8/3 (c) +6 (d) +2 37. The oxidation state of Fe in Fe ₃ O ₄ is (a) +3 (b) 8/3 (c) +6 (d) +2 38. In oxygen difluoride, the oxidation number of oxygen (a) −2 (b) −1 (c) +2 (d) +1, −2 (c) +2 (d) +1, −2 (d) −2 (d) All of these 36. The oxidation state of Fe in Fe ₃ O ₄ is (a) +3 (b) 8/3 (c) +6 (d) +2 (c) +6 (d) +2 (d) -1 (d) −3 37. The oxidation state of Fe in Fe ₃ O ₄ is (a) −2 (b) −1 (c) +2 (d) +1, −2 (c) +2 (d) +1, −2 (d) -4 (d) -3 39. Oxygen has an oxidation state of +2 in the compoundable of the					(b) +6
 22. The oxidation number of chromium in potassium dichromate is (a) +6 (b) -5 (c) -2 (d) +2 (e) -2 (f) -2 (h) +2 (e) -2 (f) -2 (h) +2 (h) +3 (h) +3					
(a) +6 (b) -5 (c) -2 (d) +2 (a) nitrogen dioxide (b) nitrogen (iv) oxide (c) -2 (d) +2 (c) nitrogen per oxide (d) All of these (e) nitrogen per oxide (e)	22		35.		TANK I LA COLO COLO COLO COLO COLO COLO COLO C
(c) -2 (d) +2 23. The oxidation number of sulphur in S ₈ , S ₂ F ₂ , H ₂ S respectively, are (a) 0,+1 and -2 (b) +2,+1 and -2 (c) 0,+1 and +2 (d) -2,+1 and -2 (d) -2,+1 and -2 (e) -1 (d) -3 25. Oxidation number of nitrogen in (NH ₄) ₂ SO ₄ is (a) -1/3 (b) -1 (c) +1 (d) -3 26. Oxidation number of carbon in CH ₂ Cl ₂ is (a) -4 (b) +4 (c) -2 (c) nitrogen per oxide (d) All of these The oxide, which cannot act as a reducing agent, is (a) NO ₂ (b) SO ₂ (c) CO ₂ (d) ClO ₂ (d) ClO ₂ (e) +6 (d) +2 37. The oxidation state of Fe in Fe ₃ O ₄ is (a) +3 (b) 8/3 (c) +6 (d) +2 38. In oxygen difluoride, the oxidation number of oxygen (a) -2 (b) -1 (c) +2 (d) +1, -2 39. Oxygen has an oxidation state of +2 in the compoundation of the compoundation in the c	22.				
 23. The oxidation number of sulphur in S₈, S₂F₂, H₂S respectively, are (a) 0,+1 and -2 (b) +2,+1 and -2 (c) 0,+1 and +2 (d) -2,+1 and -2 24. Oxidation number of cobalt in K[Co(CO)₄] is (a) +1 (b) +3 (c) -1 (d) -3 25. Oxidation number of nitrogen in (NH₄)₂SO₄ is (a) -1/3 (b) -1 (c) +1 (d) -3 26. Oxidation number of carbon in CH₂Cl₂ is (a) -4 (b) +4 26. Oxidation number of carbon in CH₂Cl₂ is (a) -4 (b) +4 36. The oxide, which cannot act as a reducing agent, is (a) NO₂ (b) SO₂ (c) CO₂ (d) ClO₂ 37. The oxidation state of Fe in Fe₃O₄ is (a) +3 (b) 8/3 (c) +6 (d) +2 38. In oxygen difluoride, the oxidation number of oxygen (a) -2 (b) -1 (c) +2 (d) +1,-2 39. Oxygen has an oxidation state of +2 in the compound (a) H₂O₂ (b) CO₂					
respectively, are (a) $0, +1$ and -2 (b) $+2, +1$ and -2 (c) $0, +1$ and $+2$ (d) $-2, +1$ and -2 24. Oxidation number of cobalt in K[Co(CO) ₄] is (a) $+1$ (b) $+3$ (c) -1 (d) -3 25. Oxidation number of nitrogen in (NH ₄) ₂ SO ₄ is (a) $-1/3$ (b) -1 (c) $+1$ (d) -3 26. Oxidation number of carbon in CH ₂ Cl ₂ is (a) -4 (b) $+4$ (a) NO ₂ (b) SO ₂ (c) CO ₂ (d) ClO ₂ 37. The oxidation state of Fe in Fe ₃ O ₄ is (a) $+3$ (b) $8/3$ (c) $+6$ (d) $+2$ 38. In oxygen difluoride, the oxidation number of oxygen (a) -2 (b) -1 (c) $+2$ (d) $+1, -2$ 39. Oxygen has an oxidation state of $+2$ in the compoundable of the compoundable of $+2$ in the	23.	그렇게 하는 사람이 되었다. 그는 그들은 그들은 그들은 그를 하는 것이 되었다. 그는 그들은 그들은 그들은 그렇게 되었다.	36.		
(a) 0,+1 and -2 (b) +2,+1 and -2 (c) 0,+1 and +2 (d) -2,+1 and -2 24. Oxidation number of cobalt in K[Co(CO) ₄] is (a) +1 (b) +3 (c) -1 (d) -3 25. Oxidation number of nitrogen in (NH ₄) ₂ SO ₄ is (a) -1/3 (b) -1 (c) +1 (d) -3 26. Oxidation number of carbon in CH ₂ Cl ₂ is (a) -4 (b) +4 (c) CO ₂ (d) ClO ₂ (d) ClO ₂ 37. The oxidation state of Fe in Fe ₃ O ₄ is (a) +3 (b) 8/3 (c) +6 (d) +2 (d) +2 (e) +2 (d) +1,-2 39. Oxygen has an oxidation state of +2 in the compoundable of the compoundable					ran kanggaran dan kanggaran dan dan kanggaran dan dan bawai
(c) 0, +1 and +2 (d) -2, +1 and -2 24. Oxidation number of cobalt in K[Co(CO) ₄] is (a) +1 (b) +3 (c) -1 (d) -3 25. Oxidation number of nitrogen in (NH ₄) ₂ SO ₄ is (a) -1/3 (b) -1 (c) +1 (d) -3 26. Oxidation number of carbon in CH ₂ Cl ₂ is (a) -4 (b) +4 37. The oxidation state of Fe in Fe ₃ O ₄ is (a) +3 (b) 8/3 (c) +6 (d) +2 38. In oxygen difluoride, the oxidation number of oxygen (a) -2 (b) -1 (c) +2 (d) +1, -2 39. Oxygen has an oxidation state of +2 in the compound (a) H ₂ O ₂ (b) CO ₂		(a) $0, +1$ and -2 (b) $+2, +1$ and -2			201.75
 24. Oxidation number of cobalt in K[Co(CO)₄] is (a) +1 (b) +3 (c) -1 (d) -3 25. Oxidation number of nitrogen in (NH₄)₂SO₄ is (a) -1/3 (b) -1 (c) +1 (d) -3 26. Oxidation number of carbon in CH₂Cl₂ is (a) +3 (b) 8/3 38. In oxygen difluoride, the oxidation number of oxygen (a) -2 (c) +2 (d) +1, -2 39. Oxygen has an oxidation state of +2 in the compound (a) H₂O₂ (b) CO₂			37.	77. O	n Fe ₃ O ₄ is
(c) -1 (d) -3 25. Oxidation number of nitrogen in (NH ₄) ₂ SO ₄ is (a) -1/3 (b) -1 (c) +1 (d) -3 26. Oxidation number of carbon in CH ₂ Cl ₂ is (a) -4 (b) +4 (b) +4 38. In oxygen difluoride, the oxidation number of oxygen (a) -2 (b) -1 (c) +2 (d) +1, -2 39. Oxygen has an oxidation state of +2 in the compound (a) H ₂ O ₂ (b) CO ₂	24.	Oxidation number of cobalt in K[Co(CO) ₄] is			
25. Oxidation number of nitrogen in (NH ₄) ₂ SO ₄ is (a) -1/3 (b) -1 (c) +1 (d) -3 26. Oxidation number of carbon in CH ₂ Cl ₂ is (a) -4 (b) +4 (a) -2 (b) -1 (c) +2 (d) +1, -2 39. Oxygen has an oxidation state of +2 in the compound (a) H ₂ O ₂ (b) CO ₂		20.50		(c) +6	(d) $+2$
25. Oxidation number of nitrogen in (NH ₄) ₂ SO ₄ is (a) -1/3 (b) -1 (c) +1 (d) -3 26. Oxidation number of carbon in CH ₂ Cl ₂ is (a) -4 (b) +4 (a) -2 (b) -1 (c) +2 (d) +1, -2 39. Oxygen has an oxidation state of +2 in the compound (a) H ₂ O ₂ (b) CO ₂		[15] Tri	38.	In oxygen difluoride, the o	xidation number of oxygen
(a) $-1/3$ (b) -1 (c) $+1$ (d) -3 (e) $+1$ (f) -1 (f) $+1$, -2 (g) $+2$ (g) $+1$ (h) $+1$, -2 (h) $+1$, -2 (l) -1	25.	- NOTE -			
26. Oxidation number of carbon in CH ₂ Cl ₂ is (a) -4 (b) +4 (c) -0 (d) -3 (e) -3 (oxidation number of carbon in CH ₂ Cl ₂ is (a) H ₂ O ₂ (b) CO ₂				(c) $+2$	
26. Oxidation number of carbon in CH_2CI_2 is (a) -4 (b) $+4$ (a) H_2O_2 (b) CO_2	26		39.		
(2) 0	26.			1807 - 1000A-000FO	AND STATE OF
(c) H_2O (d) F_2O				1999 1999 -	
		(c) 0 (d) -2		(c) H ₂ O	(d) F ₂ O

following compounds, iron has lowest ,] 4)2SO4.6H2O e of osmium (Os) in OsO4 is (b) +6 (d) +8 wing transition metal has zero oxidation (b) NH2.NH2 (d) CrO₅ npounds does 'manganese' exhibit highest (b) Mn₃O₄ (d) MnSO₄ ing, identify the species with an atom in (b) $Cr(CN)_{6}^{3-}$ (d) CrO₂Cl₂ lowing compounds the oxidation number ro? (b) CH₃COOH (d) CH₃CHO owing compounds, the oxidation number nal? (b) I₃ (d) IF₃ ses 3 electrons, its oxidation number will (b) +6 (d) -3for NO2 using stock notation is ide (b) nitrogen (iv) oxide (d) All of these cannot act as a reducing agent, is (b) SO₂ (d) ClO₂ e of Fe in Fe₃O₄ is (b) 8/3 (d) +2de, the oxidation number of oxygen is (b) -1(d) +1,-2

- The number of electrons involved in the reduction of one nitrate ion to hydrazine is
 - (a) 8
- (b) 5
- (c) 3
- (d) 7
- 41. The average oxidation state of sulphur in Na₂S₄O₆ is
 - (a) +2.5
- (b) +2
- (c) +3.0
- (d) +3.5
- Which of the following species can function both as oxidizing as well as reducing agent?
- (c) ClO
- (d) MnO₄
- 43. The oxidation number of an element in a compound is evaluated on the basis of certian rules. Which of the following rules is not correct in this respect?
 - (a) The oxidation number of hydrogen is always + 1.
 - The algebraic sum of all the oxidation numbers in a compound is zero.
 - An element in the free or the uncombined state bears oxidation number zero.
 - In all its compounds, the oxidation number of fluorine
- 44. Nitric oxide acts as a reducing agent in the reaction
 - (a) $4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O$
 - (b) $2NO + 3I_2 + 4H_2O \rightarrow 2NO_3 + 6I^- + 8H^+$
 - (c) $2 \text{ NO} + \text{H}_2 \text{SO}_3 \rightarrow \text{N}_2 \text{O} + \text{H}_2 \text{SO}_4$
 - (d) $2 \text{ NO} + \text{H}_2\text{S} \rightarrow \text{N}_2\text{O} + \text{S} + \text{H}_2\text{O}$
- 45. In the compounds KMnO₄ and K₂Cr₂O₇ the highest oxidation state is of the element
 - (a) potassium
- (b) manganese
- (c) chromium
- (d) oxygen
- 46. Atomic number of an element is 22. The highest O.S. exhibited by it in its compounds is
- (c) 3
- (d) 4
- Why the displacement reactions of chlorine, bromine and iodine using fluorine are not generally carried out in aqueous solution?
 - chlorine, bromine and iodine reacts with water and displace oxygen of water
 - Fluorine being very reactive attacks water and displaces oxygen of water
 - (c) Fluorine does not react with chlorine, bromine and iodine in aqueous media
 - (d) None of these
- Which of the following statement is not true?
 - (a) Displacement reaction of chlorine with Br and I form the basis of identifying Br and I in laboratory using layer test
 - (b) F2, Cl2, Br2 and I2 can be recovered by halogen displacement reactions by using their respective
 - (c) F₂ can be recovered from F- by oxidising it electrolytically.
 - (d) None of these.

Which of the following do not show disproportionation

ClO₄, F₂, Cl₂, ClO₂, P₄, S₈, and ClO

- (a) ClO₂, ClO₄, and ClO
- (b) F₂ only
- (c) F2 and ClO4
- (d) ClO₄ only
- Which one of the following reactions involves disproportionation?
 - (a) $2H_2SO_4 + Cu \rightarrow CuSO_4 + 2H_2O + SO_2$
 - (b) $As_2O_3 + 3H_2S \rightarrow As_2S_3 + 3H_2O$
 - (c) 2KOH+Cl₂→KCl+KOCl+H₂O
 - (d) $Ca_3P_2 + 6H_2O \rightarrow 3Ca(OH)_2 + 2PH_3$
- The following species will not exhibit disproportionation reaction
 - (a) ClO-
- (b) CIO₂
- (c) C1O₃
- (d) ClO₄
- 52. In the reaction

$$3 Br_2 + 6 CO_3^{2-} + 3 H_2 O \rightarrow 5 Br^- + BrO_3^- + 6 HCO_3^-$$

- (a) Bromine is oxidised and carbonate is reduced.
- (b) Bromine is reduced and water is oxidised
- Bromine is neither reduced nor oxidised
- (d) Bromine is both reduced and oxidised
- Which of the following elements does not show disproportionation tendency?
 - (a) C1

- (d) I Phosphorus, sulphur and chlorine undergo disproportion in the ...A... medium.

Here, A refers to

- (a) acidic
- (b) alkaline
- (c) neutral
- (d) Both (a) and (b)
- 55. The reaction, $2H_2 O(l) \xrightarrow{\Delta} 2H_2(g) + O_2(g)$ is an example of
 - (a) addition reaction
- (b) decomposition reaction
- (c) displacement reaction (d) None of these
- How will you balance the total ionic charge of reactant and products if reaction is carried out in acidic solution?
 - (a) By using H⁺ ions
 - (b) By using OH⁻ ions
 - (c) Adding H₂O molecules to the reactant or product
 - (d) Multiplying by suitable coefficients.
- Consider the following reaction occuring in basic medium

 $2MnO_4^-(aq)+Br^-(aq) \longrightarrow 2MnO_2(s) + BrO_3^-(aq)$

How the above reaction can be balanced further?

- By adding 2 OH- ions on right side
- By adding one H₂O molecule to left side
- By adding 2H⁺ ions on right side
- (d) Both (a) and (b)

- 58. For the reaction: $NH_3 + OC1^- \longrightarrow N_2H_4 + C1^-$ in basic medium, the coefficients of NH3, OCI and N2H4 for the balanced equation are respectively
 - (a) 2, 2, 2
- (b) 2, 2, 1
- (c) 2, 1, 1
- (d) 4,4,2
- **59.** $C_2H_6(g) + nO_2(g) \rightarrow CO_2(g) + H_2O(l)$ In this equation, the ratio of the coefficients of CO2 and
- H₂O is
 - (a) 1:1 (c) 3:2
- (b) 2:3
- (d) 1:3
- **60.** $2\text{MnO}_4^- + 5\text{H}_2\text{O}_2 + 6\text{H}^+ \rightarrow 2 Z + 5\text{O}_2 + 8\text{H}_2\text{O}$. In this reaction Z is
 - (a) Mn⁺²
- (b) Mn⁺⁴
- (c) MnO₂
- (d) Mn
- 61. In the redox reaction,

$$xKMnO_4 + NH_3 \longrightarrow yKNO_3 + MnO_2 + KOH + H_2O$$

- (a) x = 4, y = 6
- (b) x = 3, y = 8
- (c) x = 8, y = 6
- (d) x = 8, y = 3
- 62. What is 'A' in the following reaction
 - $2Fe^{3+}(aq) + Sn^{2+}(aq) \rightarrow 2Fe^{2+}(aq) + A$
 - (a) $Sn^{3+}(aq)$
- (b) $Sn^{4+}(aq)$
- (c) $Sn^{2+}(aq)$
- (d) Sn
- **63.** Given:

$$X Na_2HAsO_3 + Y NaBrO_3 + Z HCl \rightarrow NaBr$$

The values of X, Y and Z in the above redox reaction are respectively

- (a) 2, 1, 2
- (b) 2, 1, 3
- (c) 3, 1, 6
- (d) 3, 1, 4
- **64.** The values of x and y in the following redox reaction

$$x Cl_2 + 6OH^- \longrightarrow ClO_3^- + yCl^- + 3H_2O$$
 are

- (a) x = 5, y = 3
- (b) x=2, y=4
- (c) x=3, y=5
- (d) x = 4, y = 2
- 65. A negative E^o means that redox couple is a _ than the H+/H2 couple

A positive Fo means that the redox couple is a than H⁺/H₂ couple

- (a) A = stronger reducing agent B = weaker reducing agent
- (b) A = stronger oxidising agent B = weaker oxidising agent
- (c) A = weaker oxidising agent B = stronger oxidising agent
- (d) Both (a) and (c)
- **66.** Given E^{Θ}
 - (i) $Mg^{2+}/Mg(s)$, $E^{\Theta} = -2.36$
 - (ii) $Ag^{+}/Ag(s)$, $E^{\Theta} = 0.80$
 - (iii) $Al^{3+}/Al(s)$, $E^{\Theta} = -1.66$
 - (iv) $Cu^{2+}/Cu(s)$, $E^{\Theta} = 0.52$

Out of the above given elements which is the strongest oxidising agent and which is the weakest oxidising agent ?

- (a) (iv) is the strong whereas (ii) is the weakest oxidising agent
- (b) (ii) is the strongest whereas (i) is the weakest oxidising agent
- (c) (i) is the strongest whereas (ii) is the weakest oxidising agent
- (ii) is the strongest whereas (iii) is the weakest oxidising agent
- 67. Stronger is oxidising agent, more is
 - (a) standard reduction potential of that species
 - (b) the tendency to get it self oxidised
 - (c) the tendency to lose electrons by that species
 - (d) standard oxidation potential of that species
- Standard reduction potentials of the half reactions are given below:

$$F_2(g) + 2e^- \rightarrow 2F^-(aq); E^\circ = +2.85 \text{ V}$$

$$Cl_2(g) + 2e^- \rightarrow 2Cl^-(aq); E^\circ = +1.36 \text{ V}$$

$$Br_2(l) + 2e^- \rightarrow 2Br^-(aq); E^\circ = +1.06 V$$

$$I_2(s) + 2e^- \rightarrow 2I^-(aq);$$
 $E^\circ = +0.53 \text{ V}$

The strongest oxidising and reducing agents respectively are:

- (a) F₂ and I⁻
- (b) Br₂ and Cl⁻
- (c) Cl₂ and Br
- (d) Cl₂ and I₂
- Standard electrode potentials of redox couples A^{2+}/A , B^{2+}/B , C/C^{2+} and D^{2+}/D are 0.3V, -0.5V, -0.75V and 0.9V respectively. Which of these is best oxidising agent and reducing agent respectively -
 - (a) D²⁺/D and B²⁺/B
- (b) B^{2+}/B and D^{2+}/D
- (c) D^{2+}/D and C^{2+}/C
- (d) C^{2+}/C and D^{2+}/D
- 70. The standard reduction potentials at 298K for the following half reactions are given against each

$$Zn^{2+}$$
 (aq) + 2e \rightleftharpoons Zn(s); -0.762 V

$$Cr^{3+}(aq) + 3e \rightleftharpoons Cr(s); -0.740 V$$

$$2H^{+}(aq) + 2e \Longrightarrow H_{2}(g) : 0.00 \text{ V}$$

$$2H^{+}(aq) + 2e \rightleftharpoons H_{2}(g); 0.00 \text{ V}$$

 $Fe^{3+}(aq) + e \rightleftharpoons Fe^{2+}(aq); 0.770 \text{ V}$

Which is the strongest reducing agent?

- (a) Zn (s)
- (b) Cr (s)
- (c) H₂(g)
- (d) Fe^{3+} (aq)
- 71. Electrode potential data are given below:

$$Fe_{(aq)}^{+3} + e^{-} \longrightarrow Fe_{(aq)}^{+2};$$

$$Al_{(aq)}^{3+} + 3e^{-} \longrightarrow Al_{(s)}; \quad E^{\circ} = -1.66 \text{ V}$$

$$E^{\circ} = -1.66 \text{ V}$$

$$Br_{2 \text{ (aq)}} + 2e^{-} \longrightarrow 2Br_{\text{(aq)}}^{-}; E^{\circ} = +1.08V$$

Based on the data, the reducing power of Fe2+, Al and Brwill increase in the order

- (a) $Br^- < Fe^{2+} < A1$
- (b) $Fe^{2+} < Al < Br^{-}$
- (c) $Al < Br^- < Fe^{2+}$
- (d) $Al < Fe^{2+} < Br$
- 72. The standard reduction potentials for Cu²⁺/Cu; Zn²⁺/Zn; Li^{+}/Li ; Ag^{+}/Ag and H^{+}/H_{2} are + 0.34 V, - 0.762 V, - 3.05 V, + 0.80 V and 0.00 V respectively. Choose the strongest reducing agent among the following
 - (a) Zn
- (b) H₂
- (c) Ag
- (d) Li

73. Given:

$$E_{\frac{1}{2}Cl_2/Cl^-}^{o} = 1.36 \,V, E_{Cr^{3+}/Cr}^{o} = -0.74 \,V,$$

$$E^{o}_{Cr_{2}O_{7}^{2-}/Cr^{3+}} = 1.33 \text{ V}, E^{o}_{MnO_{4}^{-}/Mn^{2+}} = 1.51 \text{ V}$$

The correct order of reducing power of the species (Cr, Cr³⁺, Mn²⁺ and Cl⁻) will be

- (a) $Mn^{2+} < Cl^{-} < Cr^{3+} < Cr$
- (b) $Mn^{2+} < Cl^{3+} < Cl^{-} < Cr$
- (c) $Cr^{3+} < Cl^{-} < Mn^{2+} < Cr$
- (d) $Cr^{3+} < Cl^{-} < Cr < Mn^{2+}$
- E^{Θ} Values of some redox couples are given below. On the basis of these values choose the correct option.

$$E^{\Theta}$$
 values : Br_2/Br^- = + 1.90; $Ag^+/Ag(s)$ = + 0.80 $Cu^{2+}/Cu(s)$ = + 0.34; $I_2(s)/I^-$ = 0.54

- Cu will reduce Br-
- (b) Cu will reduce Ag
- (c) Cu will reduce I
- (d) Cu will reduce Br₂
- 75. Arrange the following in the order of their decreasing electrode potentials: Mg, K, Ba and Ca
 - (a) K, Ca, Ba, Mg
- (b) Ba, Ca, K, Mg
- (c) Ca, Mg, K, Ba
- (d) Mg, Ca, Ba, K
- The standard electrode potentials of four elements A, B, C and D are -3.05, -1.66, -0.40 and +0.80. The highest chemical reactivity will be exhibited by
 - (a) A
- (c) C
- (d) D

STATEMENT TYPE QUESTIONS

Which of the following statement(s) is/are correct for the given reaction?

 $2\text{HgCl}_2(aq) + \text{SnCl}_2(aq) \rightarrow \text{Hg}_2\text{Cl}_2(s) + \text{SnCl}_4(aq)$

- Mercuric chloride is reduced to Hg₂Cl₂
- (ii) Stannous chloride is oxidised to stannic chloride
- (iii) HgCl₂ is oxidised to Hg₂Cl₂
- (iv) It is an example of redox reaction
- (a) (i), (ii) and (iv)
- (b) (i) and (ii)
- (c) (iii) and (iv)
- (d) (iii) only
- Which of the following sequences of T and F is correct for given statements. Here T stands for true and F stands for false statements
 - Reducing agents lower the oxidation number of an element in a given substance. These reagents are also called as reductants
 - (ii) Reducing agents are acceptor of electrons
 - (iii) Loss of electron(s) by any species is called oxidation reaction
 - (iv) Oxidation and reduction always occur simultaneously.
 - (a) TTTT
- (b) TFTT
- (c) TFFT
- (d) FTTT
- 79. If aqueous solution of H2O2 is made acidic. For this which of the following statement(s) is/are correct?
 - This aqueous solution oxidizes I
 - This aqueous solution oxidizes F

- Both statements (i) and (ii) are correct.
- Statement (i) is correct and (ii) is incorrect.
- Statement (ii) is correct and (i) is incorrect.
- (d) Both statements (i) and (ii) are incorrect.
- 80. Which of the following statement(s) is/are correct?
 - All alkali metals and some alkaline earth metals (Ca, Sr and Ba) displace hydrogen from cold water.
 - Magnesium and iron react with steam as well as acids to produce hydrogen gas.
 - (iii) Cadmium and tin do not react with steam but displace hydrogen from acids.
 - (i) and (ii)
- (b) (ii) only
- (c) (i) and (iii)
- (d) (i), (ii) and (iii)
- Which of the following statements are correct concerning redox properties?
 - A metal M for which E° for the half life reaction $M^{n+} + ne^- \rightleftharpoons M$ is very negative will be a good reducing agent.
 - The oxidizing power of the halogens decreases from chlorine to iodine.
 - The reducing power of hydrogen halides increases from hydrogen chloride to hydrogen iodide
 - (i), (ii) and (iii)
- (b) (i) and (ii)
- (c) (i) only
- (d) (ii) and (iii)
- 82 Which of the following statement(s) is/are correct?
 - A negative value of E⁻ means that the redox couple is a weaker reducing agent than the H⁺/H₂ couple.
 - A positive E- means that the redox couple is weaker reducing agent than the H⁺/H₂.

Which of the following code is incorrect regarding above statements?

- (a) Only (i)
- (b) only (ii)
- (c) Both (i) and (ii)
- (d) Neither (i) nor (ii)
- Which of the following statement(s) is/are correct?
 - Oxidation state of carbon in C_3H_4 is -(4/3).
 - Electrons are never shared in fraction.
 - (i) and (ii)
- (b) Only (i)
- Only (ii)
- (d) Neither (i) nor (ii)

MATCHING TYPE QUESTIONS

84. Match the columns

Column-I

Column-II

- (A) Addition of
 - electronegative element
- (p) Oxidation reaction (q) Reduction reaction
- (B) Removal of hydrogen (C) Addition of
 - electropositive element
- (D) Removal of oxygen
- (a) (A) (p), (B) (q), (C) (q), (D) (p)
- (b) (A) (p), (B) (p), (C) (q), (D) (q)
- (c) (A) (p), (B) (q), (C) (p), (D) (q)(d) (A) - (q), (B) - (q), (C) - (p), (D) - (p)

85. Match the columns

Column-I

- (A) $2Mg + O_2 \longrightarrow 2MgO$
- (p) Removal of hydrogen
- (B) $Mg + Cl_2 \longrightarrow MgCl_2$
- (q) Removal of electropositive element

(r) Addition of oxygen

element, chlorine

(C) $2H_2S + O_2 \longrightarrow 2S + 2H_2O$

(D) $2KI + H_2O + O_3 \longrightarrow$

(s) Addition of $2KOH + I_2 + O_2$ electronegative

Column-II

- (a) A-(s), B-(q), C-(p), D-(r)
- (b) A-(r), B-(s), C-(p), D-(q)
- (c) A-(s), B-(r), C-(q), D-(p)
- (d) A-(r), B-(p), C-(s), D-(q)
- Match Column-I (compound) with Column-II (oxidation state of underlined element) and choose the correct option.

Column - I

Column - II

- (A) CuO
- (p)
- (B) MnO-
- 3 (q)
- (C) HAuCl₄
- (r) 2
- (D) <u>Tl</u>₂O
- (s) 1
- (a) A (r), B (p), C (q), D (s)
- (b) A (s), B (r), C (p), D (q)
- (c) A (r), B (s), C (p), D (q)
- (d) A (s), B (q), C (p), D (r)
- 87. Match the columns

Column-I

Column-II

- (A) $V_2O_5(s) + 5 Ca(s) \rightarrow$ 2V(s) + 5 CaO(s)
- (p) Disproportionation reaction
- (B) $CH_4(g) + 2O_2(g) \xrightarrow{\Delta}$ $CO_2(g) + 2 H_2O(1)$
- (q) Decomposition reaction
- (C) $P_4(s) + 3OH^-(aq) + 3H_2O(1)$ (r) Combination \rightarrow PH₃(g) +3H₂PO₂(aq) reaction
- (D) $2 \text{ KClO}_3(s) \xrightarrow{\Delta}$ $2KCl(s) + 3O_2(g)$
- (s) Displacement reaction
- (a) A (s), B (q), C (r), D (p)
- (b) A (s), B (r), C (p), D (q)
- (c) A (r), B (s), C (q), D (p)
- (d) A (r), B (s), C (p), D (q)

ASSERTION-REASON TYPE QUESTIONS

Directions: Each of these questions contain two statements, Assertion and Reason. Each of these questions also has four alternative choices, only one of which is the correct answer. You have to select one of the codes (a), (b), (c) and (d) given below.

- Assertion is correct, reason is correct; reason is a correct explanation for assertion.
- (b) Assertion is correct, reason is correct; reason is not a correct explanation for assertion
- (c) Assertion is correct, reason is incorrect
- Assertion is incorrect, reason is correct.

Assertion : In the reaction $2Na(s) + Cl_2(g) \rightarrow 2NaCl(s)$ sodium is oxidised.

Reason: Sodium acts as an oxidising agent in given

- Assertion: HClO₄ is a stronger acid than HClO₃. Reason: Oxidation state of Cl in HClO₄ is +VII and in HClO₃
- 90. Assertion: The reaction:

 $CaCO_3(s) \xrightarrow{\Delta} CaO(s) + CO_2(g)$ is an example of decomposition reaction

Reason: Above reaction is not a redox reaction.

Assertion: In a reaction

 $Zn(s) + CuSO_4(aq) \rightarrow ZnSO_4(aq) + Cu(s)$

Zn is a reductant but itself get oxidized.

Reason: In a redox reaction, oxidant is reduced by accepting electrons and reductant is oxidized by losing electrons.

CRITICAL THINKING TYPE QUESTIONS

- Among NH₃, HNO₃, NaN₃ and Mg₃N₂ the number of molecules having nitrogen in negative oxidation state is
 - (a) 1
- (b) 2 (d) 4
- (c) 3
- 93. Fill up the table from the given choice.
 - Element Oxidation number

-2 in most compounds <u>(i)</u> in H_2O_2 Oxygen and (ii) in OF₂

Halogen -1 for (iii) in all its compounds (iv) in most of its compounds (v) in Hydrogen

binary metallic hydrides Sulphur (vi) in all sulphides

- (iii) (iv) (v) (i)
- +1a -1+2 (a) +1(b) −1 +2 -1-2
- (c) -1 +1+2
- (d) +1 +2 a +1+1 +6
- The correct decreasing order of oxidation number of oxygen in compounds BaF2, O3, KO2 and OF2 is
 - (a) $BaO_2 > KO_2 > O_3 > OF_2$
 - (b) $OF_2 > O_3 > KO_2 > BaO_2$
 - (c) $KO_2 > OF_2 > O_3 > BaO_2$
 - (d) $BaO_2 > O_3 > OF_2 > KO_2$
- **95.** Oxidation numbers of P in PO_4^{3-} , of S in SO_4^{2-} and that of

Cr in Cr₂ O₇²⁻ are respectively

- (a) +3, +6 and +5
- (b) +5, +3 and +6
- (c) -3, +6 and +6
- (d) +5, +6 and +6
- When Cl2 gas reacts with hot and concentrated sodium hydroxide solution, the oxidation number of chlorine changes from
 - (a) zero to +1 and zero to −5
 - (b) zero to −1 and zero to +5
 - (c) zero to -1 and zero to +3
 - (d) zero to +1 and zero to −3

- **97.** Which of the following arrangements represent increasing oxidation number of the central atom?
 - (a) $CrO_2^-, ClO_3^-, CrO_4^{2-}, MnO_4^{-}$
 - (b) $ClO_3^-, CrO_4^{2-}, MnO_4^-, CrO_2^{-}$
 - (c) CrO₂, ClO₃, MnO₄, CrO₄²
 - (d) CrO₄²⁻,MnO₄⁻,CrO₂⁻,ClO₃⁻
- 98. Which of the following act as reducing agents?
 - (i) PO₄³
- (ii) SO₃
- (iii) PO₃²⁻
- (iv) NH₃
- (a) (i), (ii) and (iii)
- (b) Only(iii)
- (c) (i), (iii) and (iv) (d) (iii) and (iv)
- 99. In the reaction shown below, oxidation state of the carbon in reactant and product are (i) and (ii) respectively? Is the given reaction a redox reaction?
 Na₂CO₃(aq) + HCl (aq)

$$\longrightarrow Na^{\oplus}(aq) + Cl^{-}(q) + H_2O(\ell) + CO_2(g)$$

- (a) (i) 6, (ii) 4, yes
- (b) (i) 6, (ii) 6, No
- (c) (i) 4, (ii) 4, No
- (d) (i) 4, (ii) 4, yes
- **100.** What products are expected from the disproportionation reaction of hypochlorous acid?
 - (a) HCl and Cl2O
- (b) HCl and HClO₂
- (c) HClO₃ and Cl₂O
- (d) HClO₂ and HClO₄
- 101. In the disproportionation reaction
 - $3 \text{ HClO}_3 \rightarrow \text{HClO}_4 + \text{Cl}_2 + 2\text{O}_2 + \text{H}_2\text{O}$, the equivalent mass of the oxidizing agent is (molar mass of HClO₃ = 84.45)
 - (a) 16.89
- (b) 32.22
- (c) 84.45
- (d) 28.15
- 102. Consider the following reaction:

$$xMNO_4^- + yC_2O_4^{\ 2-} + zH^+ \rightarrow xMn^{2+} + 2yCO_2 + \frac{z}{2}H_2O$$

- The value's of x, y and z in the reaction are, respectively:
- (a) 5, 2 and 16
- (b) 2, 5 and 8
- (c) 2,5 and 16
- (d) 5, 2 and 8
- 103. In the balanced chemical reaction

$$IO_3^- + aI^- + bH^+ \longrightarrow cH_2O + dI_2$$

- a, b, c and d respectively corresponds to
- (a) 5, 6, 3, 3
- (b) 5, 3, 6, 3
- (c) 3,5,3,6
- (d) 5, 6, 5, 5
- 104. If equal volume of reactants are used, than no. moles of KMnO₄ (moles per liter) used in acidic medium required to completely oxidises the 0.5 M FeSO₃?
 - (a) 0.3
- (b) 0.1
- (c) 0.2
- (d) 0.4
- 105. Acidic medium used in KMnO₄ can be made from which of the following acids?
 - (a) HCl
- (b) H_2SO_4
- (c) HI
- (d) HBr
- 106. If rod of a metal (x) is put in a metal ion solution which is blue in colour, solution turn colorless. The metal rod and solution respectively are?
 - (a) Zinc and Cu(II)
- (b) Zinc and Ni(II)
- (c) Aluminium and Cu(II) (d) Both (a) and (c)
- **107.** What could be the X^- in the system, Where X signifies halogen; formation of shown below X_2 takes place, when F_2 is purge into aqueous solution of X^- ?

- (a) Br-
- (b) C1-
- (c) I-
- (d) All of these

HINTS AND SOLUTIONS

FACT/DEFINITION TYPE QUESTIONS

- (a) Addition of oxygen takes place in oxidation.
- (c) Given reaction is oxidation reaction due to removal of electropositive element potassium from potassium ferrocyanide.
- 3. (d) 2Na(s) + H₂(g) → 2NaH(s)
 With the careful application of the concept of electronegativity only S we can find that sodium is oxidised and hydrogen is reduced.
- 4. (a) Losing of electron is called oxidation.
- 5. **(b)** Oxidation reaction (loss of 2e⁻)

- 6. (a) O.N. of Mn in MnO₄ is +7 and in Mn²⁺ it is +2. The difference is of 5 electrons.
- 7. (a) Ox. no. of Cr on both side is +6.
- 8. (a) $4P + 3KOH + 3H_2O \rightarrow KH_2PO_2 + PH_3$ O.N of P = 0, $In KH_2PO_2 \text{ it is } + 1$, $In PH_3 \text{ it is } -3$. Hence P is oxidised and reduced.
- (a) In a redox reaction, one molecule is oxidised and other molecule is reduced i.e. oxidation number of reactants are changed.

$$\begin{array}{ccc}
0 & 0 & +1-1 \\
H_2 + Br_2 & \longrightarrow 2 HBr
\end{array}$$

Here H₂ is oxidised and Br₂ is reduced, thus it is oxidation-reduction reaction.

10. (b)
$$4Na + O_2 \longrightarrow 2Na_2O$$
Loss of electrons (oxidation)

In this reaction, Na converts into ion (Na⁺) and Na donates electrons to oxygen atoms, So, Na behaves as reducing agent.

- 11. **(b)** $Zn^{2+} + 2e^{-} \rightarrow Zn(s)$ Here electrons are reducing from Zn^{2+} to Zn.
- 12. (c) Co(s)+Cu²⁺(aq) → Co²⁺(aq)+Cu(s)

 This reaction is a redox reaction as Co undergoes oxidation whereas Cu⁺² undergoes reduction.
- 13. (c) $N_2^{-4}H_4^{+4} \xrightarrow{loss \text{ of } 10e^-} N_2^{+6}Y;$ O.N.of N changes from -2 to +3

- 14. (b) Blue colour of the solution disappear due to formation of Zn^{2+} .
- 15. (d) Correct order is Zn > Cu > Ag.
- 16. (b) For elements, in the free or the uncombined state, each atom bears an oxidation number of zero.
- 17. (c) Oxidation number of oxygen in $OF_2 = +2$.

$$In KO_2 = \frac{-1}{2}$$

- **18. (d)** Oxidation number of hydrogen when it is bonded to metals in binary compounds is -1
- 19. (a) Auric Chloride = Au(III)Cl₃
- **20.** (d) Let the oxidation no. of N in HNO₃ = x

$$\therefore 1+x+(3\times-2)=0$$

\therefore x=+5

In this reaction, none of the elements undergoes a change in oxidation number or valency.

- 22. (a) Let x =oxidation no. of Cr in $K_2Cr_2O_7$. $\therefore (2 \times 1) + (2 \times x) + 7(-2) = 0$ or 2 + 2x - 14 = 0 or x = +6.
- 23. (a) (i) Oxidation state of element in its free state is zero.
 - (ii) Sum of oxidation states of all atoms in compound is zero.
 O.N. of S in S₈ = 0; O.N. of S in S₂F₂ = +1;
- **24.** (c) K[Co(CO)₄]

Let O.N. of Co be x then

O.N. of S in $H_2S = -2$;

$$1 \times (+1) + x + 4 \times (0) = 0$$
for K for Co for CO
$$\cdot O.N. \text{ of Co is} = -1$$

25. (d) $(NH_4)_2 SO_4$ is split into ions. NH_4^+ . Let O.N. of N be x then, $1 \times (x) + 4 \times (+1) = 1$ $\therefore x = -3$

- **27. (d)** O.N. of Fe in (a), (b), (c) and (d) respectively are: +3, +2, +2 and 0.
- 28. (d) OsO_4 Let O.N. of Os be x then $1 \times (x) + 4(-2) = 0$ $\therefore x = 8$

- 29. (a) Fe(CO)₅ is metal carbonyl, hence O.N. of Fe is zero.
- **30.** (c) O.N. of Mn in K_2MnO_4 is +6
- **31.** (d) MnO_4^- (O.S. of Mn +7); $Cr(CN)_6^{3-}$ (O.S. of Cr +3), NiF_6^{2-} (O.S. of Ni +4) and CrO_2Cl_2 (O.S. of Cr +6)
- **32.** (d) O.N. of carbon in CH₃CHO is -1; in other cases it is zero
- **33. (b)** O.N. of iodine in I_3^- is -1/3
- 34. (b) M^{3+} on losing 3 elections will become M^{+6} and O.N. = +6.
- **35. (b)** The method of representing oxidation number by a Roman numeral within the paranthesis represents Stock notation.
- **36.** (c) Carbon has the maximum oxidation state of + 4, therefore carbon dioxide (CO₂) cannot act as a reducing agent.
- 37. **(b)** Let the oxidation no, of Fe in Fe₃O₄ = x $\therefore 3x + (-2 \times 4) = 0$ or 3x = 8 $\therefore x = \frac{8}{3}$
- 38. (c) Let oxidation state of oxygen in $OF_2 = x$ $\therefore x + (-1 \times 2) = 0$ $\therefore x = +2$
- 39. (d) In H_2O_2 : $\Rightarrow 2 \times (+1) + 2 \times x = 0 \Rightarrow x = -1$ In CO_2 : $\Rightarrow 4 + 2x = 0 \Rightarrow x = -2$ In H_2O : $\Rightarrow 2 \times (+1) + x = 0 \Rightarrow x = -2$ In F_2O : $\Rightarrow 2 \times (-1) + x = 0 \Rightarrow x = +2$
- 40. (d) $NO_3^- \longrightarrow N_2H_4$ So, for reduction of 1 mole of NO₋₂
 ₃ number of electrons required is 7.
- 41. (a) Let the oxidation state of S be x. $S_4O_6^{2-} \Rightarrow 4x - 12 = -2 \Rightarrow 4x = 10 \Rightarrow x = 10/4 = 2.5$
- 42. (c) Species O.N. Cl^{-} -1 ClO_{4}^{-} +7 ClO^{-} +1 MnO_{4}^{-} +7

In ClO⁻ chlorine is in +1 oxidation state which can be increased or decreased thus it acts as an oxidising or reducing agent.

In other given species the underlined elements are either in their minimum or maximum oxidation state.

- 43. (a)
- 44. (b) O.N. of N changes from +2 to +5 hence NO is reducing.
- **45. (b)** In KMnO₄: Let O.N. of Mn be x $\Rightarrow +1 + x + 4(-2) = 0 \Rightarrow x = +7$ In K₂Cr₂O₇: Let O.N. of Cr be x $\Rightarrow 2(1) + 2x + 7(-2) = 0 \Rightarrow x = +6$
- **46. (d)** The element is Ti (At. no. 22). Electronic configuration is $1s^2$, $2s^2p^6$, $3s^2p^6d^2$, $4s^2$. the energy level of 3d and 4s is very close. It can have Ti⁴⁺ O.S.

47. (b) Fluorine is so reactive that it attacks water and displaces the oxygen of water :

$$^{+1-2}_{2\text{H}_2\text{O}(I)+} \overset{0}{_{2\text{F}_2(g)}} \overset{+1-1}{\to} \overset{0}{_{4\text{HF}(aq)}} \overset{0}{\to} \overset{0}{_{2(g)}}$$

- **48. (b)** As fluorine is the strongest oxidising agent; there is no way to convert F⁻ ions to F₂ by chemical means. The only way to achieve F₂ from F⁻ is to oxidise it electrolytically.
- **49. (c)** F₂ being most electronegative element cannot exhibit any positive oxidation state.

In ClO₄ chlorine is present in its highest oxidation state i.e + 7. Therefore it does not show disproportionation reaction.

50. (c) A reaction, in which a substance undergoes simultaneous oxidation and reduction, is called disproportionation reaction. In these reactions, the same substance simultaneously acts as an oxidising agent and as a reducing agent. Here Cl undergoes simultaneous oxidation and reduction.

$$2\mathsf{KOH} + \mathsf{Cl}_2 \to \mathsf{KCl} + \mathsf{KOCl} + \mathsf{H}_2\mathsf{O}.$$

- 51. (d) In disproportionation reaction, one element of a compound will simultaneously get reduced and oxidised. In ClO₄⁻, oxidation number of Cl is +7 and it can not increase it further. So, ClO₄⁻ will not get oxidised and so will not undergo disporportionation reaction.
- 52. (d) 3Br₂+6CO₃²⁻+3H₂O → 5Br⁻+BrO₃⁻+6HCO₃⁻
 O.N. of Br₂ changes from 0 to -1 and +5 hence it is reduced as well as oxidised.
- 53. (c)
- **54. (b)** Phosphorus, sulphur and chlorine disproportionate in the alkaline medium.
- 55. **(b)** $2H_2O \xrightarrow{\Delta} 2H_2 + O_2$ There is decomposition of H_2O molecule into H_2 and O_2 .
- 56. (a) H⁺ ions are added to the expression on the appropriate side so that the total ionic charges of reactants and products become equal.
- 57. (d) Since reaction is occurring in basic medium therefore 2OH⁻ are added on right side.

$$2MnO_4^-(aq) + Br^-(aq) \longrightarrow$$

$$2MnO_2(s) + BrO_3^-(aq) + 2OH^-(aq)$$

Now, hydrogen atoms balanced by adding one H₂O molecule to the left side

$$2MnO_4^-(aq) + Br^-(aq) + H_2O(\ell) \longrightarrow$$

$$2MnO_2(s) + BrO_3^-(aq) + 2OH^-(aq)$$

58. (c) The balanced equation:

$$2NH_3 + OCl^- \longrightarrow N_2H_4 + Cl^- + H_2O$$

59. (b) The balanced equation is

$$2\mathrm{C}_2\mathrm{H}_6 + 7\mathrm{O}_2 \rightarrow 4\mathrm{CO}_2 + 6\mathrm{H}_2\mathrm{O}.$$

Ratio of the coefficients of CO₂ and H₂O is 4:6 or 2:3.

- **60.** (a) $2MnO_4^- + 5H_2O_2 + 6H^+ \rightarrow 2Mn^{2+} + 5O_2 + 8H_2O$.
- **61. (d)** $8KMnO_4 + 3NH_3 \longrightarrow 8MnO_2 + 3KNO_3 + 5KOH$

+2H₂O

- 62. **(b)** Reduction $2Fe^{3+} + Sn^{2+} \rightarrow 2Fe^{2+} + Sn^{4+}$ Oxidation
- 63. (c) On balancing the given reaction, we find 3Na₂HAsO₃ + NaBrO₃ + 6HCl

$$\longrightarrow$$
 6NaCl + 3H₃AsO₄ + NaBr

64. (c) $\begin{array}{c} \downarrow \\ \times \text{Cl}_2 + 6\text{OH} \longrightarrow \text{ClO}_3 + \text{yCl}^- + 3\text{H}_2\text{O} \\ \text{change in oxidation number} = -1 \end{array}$

on balancing the eq we get

$$3Cl_2 + 6OH^- \longrightarrow ClO_3^- + 5Cl^- + 3H_2O$$

65. (d) Negative E^Θ ⇒ Stronger reducing agent or weaker oxidising agent

Positive $E^{\Theta} \Rightarrow$ Weaker reducing agent or stronger oxidising agent.

- **66. (b)** Strongest oxidising agent = $Ag^+/Ag(s)$ Weakest oxidising agent = $Mg^{2+}/Mg(s)$
- 67. (a) More is E^o_{RP}, more is the tendency to get itself reduced or more is oxidising power.
- **68. (a)** Higher the value of reduction potential higher will be the oxidising power whereas the lower the value of reduction potential higher will be the reducing power.
- 69. (c) The redox couple with maximum reduction potential will be best oxidising agent and with minimum reduction potential will be best reducing agent.
- 70. (a) Since oxidation potential of Zn is highest hence strongest reducing agent.
- 71. (a) Fe Al Br $0.77 - 1.66 - 1.08 \, \text{E}^{\circ}_{\text{Red}}$ $-0.77 - 1.66 - 1.08 \, \text{E}^{\circ}_{\text{Oxi}}$ Hence, reducing power Al > Fe²⁺ > Br
- **72. (d)** More the negative reduction potential, more is the tendency to lose electron. The reducing power increases as the standard reduction potential becomes more and more negative.

Thus, Li is the strongest reducing agent as the standard reduction potential of Li⁺/Li is most negative, –3.05 V.

- 73. (a) Lower the value of reduction potential higher will be reducing power hence the correct order will be Mn²⁺ < Cl⁻ < Cr³⁺ < Cr</p>
- 74. (d)
- 75. (d) Order of decreasing electrode potentials of Mg, K, Ba and Ca is

It can be explained by their standard reduction potentials.

$$E_{K^{+}|K}^{\circ} = -2.925$$

$$E_{Ba^{2+}|Ba}^{\circ} = -2.90$$

$$E_{Ca^{2+}|Ca}^{\circ} = -2.87$$

$$E_{Mg^{2+}|Mg}^{\circ} = -2.37$$

Highly negative value of E_{red}° shows the least value of electrode potential.

76. (a) Standard electrode potential i.e. reduction potential of A is minimum (-3.05V) i.e. its oxidation potential is maximum which implies 'A' is most reactive chemically.

STATEMENT TYPE QUESTIONS

- 77. (a) For statement (iii), HgCl₂ is reduced to Hg₂Cl₂
- 78. (b) For statement (ii) reducing agents are donor of electrons.
- 79. (b) H₂O₂ is strong oxidizing than I₂, reduction potential of H₂O₂ is greater than that of I₂.
- 80. (d) All the given statements are correct.
- 81. (a) (i) Mⁿ⁺ + ne⁻ M, for this reaction, high negative value of E° indicates lower reduction potential, that means M will be a good reducing agent.

Stronger reducing agent
$$\Rightarrow$$
 Easy to oxidise \Downarrow Lower reduction potential \Leftarrow higher oxidation potential

(ii) Element F C1 Br I

Reduction potential +2.87 +1.36 +1.06 +0.54

(F° volt)

As reduction potential decreases from fluorine to iodine, oxidising nature also decreases from fluorine to iodine.

- (iii) The size of halide ions increases from F⁻ to I⁻. The bigger ion can loose electron easily. Hence the reducing nature increases from HF to HI.
- 82. (a)
- 83. (a) -(4/3) is the average oxidation state of C in C_3H_4 .

MATCHING TYPE QUESTIONS

84. (b) Oxidation is addition of electronegative or removal of electroposition element to a substance or removal of hydrogen from a substance.

Reduction is addition of electropositive or removal of electropositive element or removal of oxygen from a substance.

- 85. (b)
- 86. (a) $\underline{\text{Cu}}\text{O} \Rightarrow +2$ $\underline{\text{Mn}}\text{O}_2 \Rightarrow +4$ $\underline{\text{HAu}}\text{Cl}_4 \Rightarrow +3$ $\underline{\text{Tl}}_2\text{O} \Rightarrow +1$
- 87. (b)

ASSERTION-REASON TYPE QUESTIONS

- 88. (c) In reaction 2Na(s) + Cl₂(g) → 2NaCl(s) sodium is oxidised by loss of electrons and acts as a reducing agent (donor of electrons).
- 89. (b) Both Assertion and Reason are true but reason is not the correct explanation of assertion. Greater the number of negative atoms present in the oxy-acid make the acid stronger. In general, the strengths of acids that have general formula (HO)_m ZO_n can be related to the value of n. As the value of n increases, acidic character also increases. The negative atoms draw electrons away from the Z-atom and make it more positive. The Z-atom, therefore, becomes more effective in withdrawing electron density away from the oxygen atom that bonded to hydrogen. In turn, the electrons of H O bond are drawn more strongly away from the H-atom. The net effect makes it easier from the proton release and increases the acid a strength.
- **90. (b)** Decomposition of calcium carbonate is not a redox reaction.

91. (a) Oxidation loss of
$$2e^-$$

$$Zn(s) + Cu^{2+}(aq) \longrightarrow Zn^{2+}(aq) + Cu(s)$$
Reduction gain of $2e^-$

CRITICAL THINKING TYPE QUESTIONS

 (c) Calculating the oxidation state of nitrogen in given molecules;

Oxidation state of N in NH₃ is

$$x + 3 \times (+1) = 0$$
 or $x = -3$
Oxidation state on N in NaNO₃ is
 $1 + x + 3 \times (-2) = 0$ or $x = +5$

Oxidation state of N in NaN3 is

$$+1+3x=0 \text{ or } x=-\frac{1}{3}$$

Oxidation state of N in Mg_3N_2 is

$$3 \times 2 + 2x = 0$$
 or $x = -3$

Thus 3 molecules (i.e. NH₃, NaN₃ and Mg₃N₂ have nitrogen in negative oxidation state.

- 93. (b)
- 94. (b) Oxidation no. of O are +2, 0, -1/2 and -1 respectively

95. (d)
$$PO_4^{3-} = x + 4(-2) = -3; x - 8 = -3; x = +5$$

$$SO_4^{2-} = x + 4(-2) = -2; x - 8 = -2; x = +6$$

$$Cr_2O_7^{2-} = 2x + 7(-2) = -2; 2x - 14 = -2;$$

$$2x=12; x=+6$$

96. (b) On reaction with hot and concentrated alkali a mixture of chloride and chlorate is formed

- 97. (a)
- 98. (d) In (i) and (ii) both P and S are in highest oxidation state. In (iii) and (iv); P has oxidation state of +4 which can be oxidized to +5 state, while in case of NH₃ nitrogen has oxidation state of -3 which can be oxidised.
- 99. (c) The redox reaction involve loss or gain of electron(s) i.e. change in oxidation state. Given reaction is not a redox reaction as this reaction involves no change in oxidation state of reactant or product.
- **100. (b)** During disproportionation same compound undergo simultaneous oxidation reduction.

101. (a) $ClO_3^- \longrightarrow Cl_2^0$ x-6=-1 x=0x=+5 x=0 (x=0 axidation number)

Equivalent mass =
$$\frac{\text{Molecular mass}}{\text{Oxidation number}} = \frac{84.45}{5} = 16.89$$

102. (c) On balancing the given equations, we get

$$2MnO_4^- + 5C_2O_4^{2-} + 16H^+ \longrightarrow 2Mn^{++}$$

$$+10CO_2 + 8H_2O$$

So,
$$x = 2$$
, $y = 5 \& z = 16$

103. (a) Given reaction is

$$IO_3^- + aI^- + bH^+ \longrightarrow cH_2O + dI_2$$

Ist half reaction

$$I^- \longrightarrow I_2 \hspace{1cm} ...(i)$$

$$-1$$
 0 (oxidation)

IInd half reaction

$$IO_3^- \longrightarrow I_2$$
 ...(ii)
+ 5 0 (reduction)

On balancing equation (ii) we have

$$10e^{-} + 2IO_{3}^{-} + 12H^{+} \longrightarrow I_{2} + 6H_{2}O$$
 ...(iii)

Now, balance equation (i)

$$2I^- \longrightarrow I_2 + 2e^-$$
(iv)

Multiply eqn (iv) by 5 and add it to eqn (iii), we get

$$2IO_3^- + 10I^- + 12H^+ \longrightarrow 6I_2 + 6H_2O$$

or, $IO_3^- + 5I^- + 6H^+ \longrightarrow 3I_2 + 3H_2O$

Hence
$$a = 5, b = 6, c = 3, d = 3$$

104. (a) Both Fe(ii) and S(iv) in
$$SO_3^{2-}$$
 can be oxidised to Fe(iii) and $(SO_4)^{2-}$ respectively hence $(3/5)\times0.5=0.3$ moles /

$$\left[MnO_4^- + 5e^- + 8H^+ \rightarrow Mn^{2+} + 4H_2O \right] \times \frac{3}{5}$$

$$Fe^{2+} \longrightarrow Fe^{3+} + le^{-}$$

 $SO_3^{2-} \longrightarrow SO_4^{2-} + 2e^{-}$

$$\frac{8}{5}$$
MnO₄⁻ + $\frac{24}{5}$ H⁺ + Fe²⁺ + SO₃²⁻

$$\longrightarrow$$
 3Mn²⁺ + 4H₂O + Fe³⁺ + SO₄²⁻

- (b) If one uses HCl, HBr or HI, to make acidic medium for KMnO₄ than all the halide ion can be oxidized as the reduction potential of KMnO₄ is very high in acidic medium, while in case of H₂SO₄, sulphur is already in its highest oxidation state cannot be further oxidized.
- 106. (d) Reduction potential of Cu(II) is greater than that of Zn(II) and Al(III) thus can be easily replaced by these ions. Moreover solution of copper is blue in color.
- 107. (d) F₂ is strongest oxididing agent among halogens thus X⁻ can be possibly Br⁻, Cl⁻ or I⁻.

